Material Model Fidelity Comparison for the Efficacy of Predicting Residual Stresses in L-PBF Additively Manufactured IN718 Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. L-Shape Geometry
2.2. Mesh
2.3. Loads and Boundary Conditions
2.4. Thermal Modeling
2.5. Mechanical Modeling—Elastic–Perfectly Plastic
2.6. Mechanical Modeling—Evolving Microstructural Model of Inelasticity
3. Results
3.1. Mechanical Model Results—Surface C2
3.2. Mechanical Model Results—Surface C3
3.3. Modeling Limitations
4. Conclusions
- Leveraging lower raster scanning temperatures at key event points with an initialized temperature equivalent to the relaxation of the given material in the mechanical model provides a reasonable amount of far-field thermal history information to predict residual stresses accurately.
- Stresses were the highest at the free surfaces, shown both experimentally and numerically.
- The localized stresses at regions of complex features such as holes demonstrate the need to account for local raster scanning effects in numerical models.
- Plastic hardening appears to have little effect on the L-PBF response away from the free surfaces of the L-shape part, as determined experimentally.
- Both EPP and EMMI qualitatively agree with the neutron diffraction measurements for stress on the C2 and C3 surfaces.
- The residual stresses in the L-shape part are strongly influenced by the temperature-dependent properties of the IN718 material.
- The influence of the temperature-dependent yield on the solution and lack of plastic strain induced hardening in areas away from free surfaces allowed for EPP to more closely match the neutron diffraction measurements than EMMI in some cases, specifically on the cross-section C3 for XX and YY.
- Though not validated by experimental data due to neutron diffraction depth penetration limitations, the stresses at the hole surfaces predicted by EMMI are as much as 67% higher than EPP, which could be attributed to plastic hardening at the free surfaces.
- Both EMMI and EPP struggled to predict maximum compressive stresses in the XX, YY, and ZZ directions on the C3 surface from 45 mm to 52 mm. One explanation for the deviation could be the presence of porosity between the hole and the free surface.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. IN718 Thermal Material Properties
Temperature (°C) | Conductivity (W/mK) | Specific Heat (J/kgK) |
---|---|---|
20 | 11.4 | 427 |
100 | 12.5 | 442 |
300 | 14 | 482 |
500 | 15.5 | 522 |
700 | 21.5 | 562 |
727 | 21 | - |
900 | - | 602 |
927 | 25 | - |
1227 | 30 | - |
1350 | - | 692 |
Appendix B. IN718 Mechanical Material Properties
Temperature (°C) | Elastic Modulus (GPa) | Yield Strength (MPa) | Coefficient of Thermal Expansion |
---|---|---|---|
21 | 208 | 1172 | - |
93 | 205 | 1172 | 1.28 × 10−5 |
204 | 202 | - | 1.35 × 10−5 |
316 | 194 | - | 1.39 × 10−5 |
427 | 186 | 1089 | 1.42 × 10−5 |
538 | 179 | 1068 | 1.44 × 10−5 |
649 | 172 | 1034 | 1.51 × 10−5 |
760 | 162 | 827 | 1.60 × 10−5 |
871 | 127 | 286 | - |
954 | 17.8 | 138 | - |
Appendix C. 316L Thermal Material Properties
Temperature (°C) | Conductivity (W/mK) | Specific Heat (J/kgK) |
---|---|---|
0 | 12.76 | 4.40 × 108 |
159 | 14.94 | 5.10 × 108 |
317 | 17.18 | 5.45 × 108 |
476 | 19.3 | 5.60 × 108 |
634 | 21.48 | 5.85 × 108 |
793 | 23.66 | 6.20 × 108 |
951 | 25.84 | 6.50 × 108 |
1110 | 28.02 | 6.80 × 108 |
1268 | 30.2 | 7.13 × 108 |
1377 | - | 7.34 × 108 |
1387 | - | 6.19 × 109 |
1417 | - | 6.19 × 109 |
1427 | 32.38 | 7.44 × 108 |
Appendix D. 316L Mechanical Material Properties
Temperature (°C) | Elastic Modulus (GPa) | Yield Strength (MPa) | Coefficient of Thermal Expansion |
---|---|---|---|
0 | 200.8 | 529 | 1.51 × 10−5 |
159 | 188.9 | 402.04 | 1.61 × 10−5 |
317 | 176.3 | 322.69 | 1.70 × 10−5 |
476 | 163.1 | 280.37 | 1.77 × 10−5 |
634 | 149.1 | 232.76 | 1.83 × 10−5 |
793 | 134.6 | 179.86 | 1.87 × 10−5 |
951 | 119.3 | 137.54 | 1.91 × 10−5 |
1110 | 103.4 | 89.93 | 1.92 × 10−5 |
1268 | 86.8 | 47.61 | 1.92 × 10−5 |
1427 | 69.5 | 0.001 | 1.92 × 10−5 |
Appendix E. IN718 EMMI Parameters
Material | m1 | m2 | m3 | m4 | m5 |
---|---|---|---|---|---|
IN718 | 1.2321 | 0.4508 | 0.14395 | 11.49 | 0.67071 |
References
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Baumers, M.; Dickens, P.; Tuck, C.; Hague, R. The cost of additive manufacturing: Machine productivity, economies of scale and technology-push. Technol. Forecast. Soc. Chang. 2016, 102, 193–201. [Google Scholar] [CrossRef]
- Dunbar, A.J.; Denlinger, E.R.; Gouge, M.F.; Simpson, T.W.; Michaleris, P. Comparisons of laser powder bed fusion additive manufacturing builds through experimental in situ distortion and temperature measurements. Addit. Manuf. 2017, 15, 57–65. [Google Scholar] [CrossRef]
- Wu, B.; Pan, Z.; Ding, D.; Cuiuri, D.; Li, H.; Xu, J.; Norrish, J. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. J. Manuf. Process. 2018, 35, 127–139. [Google Scholar] [CrossRef]
- Pant, P.; Sjöström, S.; Simonsson, K.; Moverare, J.; Proper, S.; Hosseini, S.; Luzin, V.; Peng, R. A Simplified Layer-by-Layer Model for Prediction of Residual Stress Distribution in Additively Manufactured Parts. Metals 2021, 11, 861. [Google Scholar] [CrossRef]
- Holfelder, P.; Brenner, F.; Rund, M.; Witte, A.; Junghans, S.; Seyfert, C.; Richter, M.; Dell, H.; Koukolikova, M.; Gese, H.; et al. Finite element simulation of plasticity and fracture for Inconel 718 deposited by laser powder bed fusion—Chances, use and challenges. Addit. Manuf. 2022, 56, 102888. [Google Scholar] [CrossRef]
- Yang, Y.P.; Jamshidinia, M.; Boulware, P.; Kelly, S.M. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process. Comput. Mech. 2018, 61, 599–615. [Google Scholar] [CrossRef]
- Wang, D.; Song, C.; Yang, Y.; Bai, Y. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Des. 2016, 100, 291–299. [Google Scholar] [CrossRef]
- Bugatti, M.; Semeraro, Q. Limitations of the inherent strain method in simulating powder bed fusion processes. Addit. Manuf. 2018, 23, 329–346. [Google Scholar] [CrossRef]
- Gouge, M.; Denlinger, E.; Irwin, J.; Li, C.; Michaleris, P. Experimental validation of thermo-mechanical part-scale modeling for laser powder bed fusion processes. Addit. Manuf. 2019, 29, 100771. [Google Scholar] [CrossRef]
- Gockel, J.; Sheridan, L.; Koerper, B.; Whip, B. The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int. J. Fatigue 2019, 124, 380–388. [Google Scholar] [CrossRef]
- Stokes, R.M.; Yadollahi, A.; Priddy, M.W.; Bian, L.; Hammond, V.H.; Doude, H.R. Effects of Build Interruption and Restart Procedure on Microstructure and Mechanical Properties of Laser Powder Bed Fusion Al-Si-10Mg. J. Mater. Eng. Perform. 2022, 32, 1576–1588. [Google Scholar] [CrossRef]
- Cherry, J.A.; Davies, H.M.; Mehmood, S.; Lavery, N.P.; Brown, S.G.R.; Sienz, J. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 2015, 76, 869–879. [Google Scholar] [CrossRef]
- Hodge, N.E.; Ferencz, R.M.; Solberg, J.M. Implementation of a thermomechanical model for the simulation of selective laser melting. Comput. Mech. 2014, 54, 33–51. [Google Scholar] [CrossRef]
- Ganeriwala, R.K.; Strantza, M.; King, W.E.; Clausen, B.; Phan, T.Q.; Levine, L.E.; Brown, D.W.; Hodge, N.E. Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V. Addit. Manuf. 2019, 27, 489–502. [Google Scholar] [CrossRef]
- Lindgren, L.-E.; Lundbäck, A.; Fisk, M.; Pederson, R.; Andersson, J. Simulation of additive manufacturing using coupled constitutive and microstructure models. Addit. Manuf. 2016, 12, 144–158. [Google Scholar] [CrossRef]
- Dantin, M.J.; Furr, W.M.; Priddy, M.W. Toward a Physical Basis for a Predictive Finite Element Thermal Model of the LENSTM Process Leveraging Dual-Wavelength Pyrometer Datasets. Integrating Mater. Manuf. Innov. 2022, 11, 407–417. [Google Scholar] [CrossRef]
- Soundararajan, B.; Sofia, D.; Barletta, D.; Poletto, M. Review on modeling techniques for powder bed fusion processes based on physical principles. Addit. Manuf. 2021, 47, 102336. [Google Scholar] [CrossRef]
- Baiges, J.; Chiumenti, M.; Moreira, C.A.; Cervera, M.; Codina, R. An adaptive Finite Element strategy for the numerical simulation of additive manufacturing processes. Addit. Manuf. 2021, 37, 101650. [Google Scholar] [CrossRef]
- Hodge, N.E.; Ferencz, R.M.; Vignes, R.M. Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting. Addit. Manuf. 2016, 12, 159–168. [Google Scholar] [CrossRef]
- Denlinger, E.R.; Michaleris, P. Effect of stress relaxation on distortion in additive manufacturing process modeling. Addit. Manuf. 2016, 12, 51–59. [Google Scholar] [CrossRef]
- Johnson, K.L.; Emery, J.M.; Hammetter, C.I.; Brown, J.A.; Grange, S.J.; Ford, K.R.; Bishop, J.E. Predicting the reliability of an additively-manufactured metal part for the third Sandia fracture challenge by accounting for random material defects. Int. J. Fract. 2019, 218, 231–243. [Google Scholar] [CrossRef]
- Dantin, M.J.; Priddy, M.W. A Rate- and Temperature-Dependent Thermomechanical Internal State Variable Model of the Directed Energy Deposition Process. J. Mater. Eng. Perform. 2024, 33, 4051–4064. [Google Scholar] [CrossRef]
- Marin, E.B.; Bammann, D.J.; Regueiro, R.A.; Johnson, G.C. On the Formulation, Parameter Identification and Numerical Integration of the EMMI Model: Plasticity and sotropic Damage; Sandia National Laboratories: Albuquerque, NM, USA, 2006. [Google Scholar]
- Pant, P.; Proper, S.; Luzin, V.; Sjöström, S.; Simonsson, K.; Moverare, J.; Hosseini, S.; Pacheco, V.; Peng, R.L. Mapping of residual stresses in as-built Inconel 718 fabricated by laser powder bed fusion: A neutron diffraction study of build orientation influence on residual stresses. Addit. Manuf. 2020, 36, 101501. [Google Scholar] [CrossRef]
- Hibbett, Karlsson and Sorensen. ABAQUS/Standard: User’s Manual; Hibbitt, Karlsson and Sorenson Incorporated: Pawtucket, RI, USA, 1998; Volume 1. [Google Scholar]
- Betts, J.L.; Downs, W.; Dantin, M.J.; Priddy, M.W. Examining the Gpu Acceleration Speed-Up for Finite Element Modeling of Additive Manufacturing. Available online: https://repositories.lib.utexas.edu/server/api/core/bitstreams/c004ad59-d8d5-4f4b-abf5-92eea1458740/content (accessed on 26 July 2024).
- An, N.; Yang, G.; Yang, K.; Wang, J.; Li, M.; Zhou, J. Implementation of Abaqus user subroutines and plugin for thermal analysis of powder-bed electron-beam-melting additive manufacturing process. Mater. Today Commun. 2021, 27, 102307. [Google Scholar] [CrossRef]
- Solid Edge Documentation. Siemens. Available online: https://docs.sw.siemens.com/en-US/documents/246738425/PL20190201104957790?start=0 (accessed on 26 July 2024).
- Skroch, M. Coreform CubitTM 2024.7 User Documentation. Coreform. Available online: https://coreform.com/cubit_help/cubithelp.htm#t=cubit_users_manual.html (accessed on 26 July 2024).
- Luo, Z.; Zhao, Y. A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing. Addit. Manuf. 2018, 21, 318–332. [Google Scholar] [CrossRef]
- Song, X.; Feih, S.; Zhai, W.; Sun, C.-N.; Li, F.; Maiti, R.; Wei, J.; Yang, Y.; Oancea, V.; Romano Brandt, L.; et al. Advances in additive manufacturing process simulation: Residual stresses and distortion predictions in complex metallic components. Mater. Des. 2020, 193, 108779. [Google Scholar] [CrossRef]
- Rahimi, S.; King, M.; Dumont, C. Stress relaxation behaviour in IN718 nickel based superalloy during ageing heat treatments. Mater. Sci. Eng. A 2017, 708, 563–573. [Google Scholar] [CrossRef]
- Failla, D.P., Jr.; Nguyen, C.J. AMPES: Additive Manufacturing Process Event Series Generator. Available online: https://github.com/Computational-Mechanics-Materials-Lab/AMPES (accessed on 8 June 2024).
- Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. Metall. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Kiran, A.; Li, Y.; Hodek, J.; Brázda, M.; Urbánek, M.; Džugan, J. Heat Source Modeling and Residual Stress Analysis for Metal Directed Energy Deposition Additive Manufacturing. Materials 2022, 15, 2545. [Google Scholar] [CrossRef]
- Hodgson, G. Slic3r Manual. Available online: https://manual.slic3r.org/ (accessed on 10 May 2024).
- Mohr, G.; Altenburg, S.J.; Hilgenberg, K. Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion. Addit. Manuf. 2020, 32, 101080. [Google Scholar] [CrossRef]
- Bammann, D.J. An internal variable model of viscoplasticity. Int. J. Eng. Sci. 1984, 22, 1041–1053. [Google Scholar] [CrossRef]
- Goldak, J.A.; Akhlagi, M. Computational Welding Mechanics; Springer: New York, NY, USA, 2005. [Google Scholar]
- Marin, E.; Bammann, D.; Brown, A.; El Kadiri, H.; Costley, R.; Wang, P.; Horstemeyer, M. Modeling the Hot Forging of Nickel-Based Superalloys: IN718 and Alloy 718Plus®. In Proceedings of the 7th International Symposium on Superally 718 and Derivatives, Pittsburgh, PA, USA, 10–13 October 2010; pp. 331–342. [Google Scholar]
- Lane, B.; Jacquemetton, L.; Piltch, M.; Beckett, D. Thermal Calibration of Commercial Melt Pool Monitoring Sensors on a Laser Powder Bed Fusion System; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020; p. 20. [Google Scholar]
- Ma, L.; Bin, H. Temperature and stress analysis and simulation in fractal scanning-based laser sintering. Int. J. Adv. Manuf. Technol. 2007, 34, 898–903. [Google Scholar] [CrossRef]
- Phan, T.Q.; Strantza, M.; Hill, M.R.; Gnaupel-Herold, T.H.; Heigel, J.; D’Elia, C.R.; DeWald, A.T.; Clausen, B.; Pagan, D.C.; Peter Ko, J.Y.; et al. Elastic Residual Strain and Stress Measurements and Corresponding Part Deflections of 3D Additive Manufacturing Builds of IN625 AM-Bench Artifacts Using Neutron Diffraction, Synchrotron X-Ray Diffraction, and Contour Method. Integrating Mater. Manuf. Innov. 2019, 8, 318–334. [Google Scholar] [CrossRef]
- Pant, P.; Salvemini, F.; Proper, S.; Luzin, V.; Simonsson, K.; Sjöström, S.; Hosseini, S.; Peng, R.L.; Moverare, J. A study of the influence of novel scan strategies on residual stress and microstructure of L-shaped LPBF IN718 samples. Mater. Des. 2022, 214, 110386. [Google Scholar] [CrossRef]
- Dejene, N.D.; Lemu, H.G. Current Status and Challenges of Powder Bed Fusion-Based Metal Additive Manufacturing: Literature Review. Metals 2023, 13, 424. [Google Scholar] [CrossRef]
- Guillen, D.; Wahlquist, S.; Ali, A. Critical Review of LPBF Metal Print Defects Detection: Roles of Selective Sensing Technology. Appl. Sci. 2024, 14, 6718. [Google Scholar] [CrossRef]
- Denlinger, E.R.; Gouge, M.; Irwin, J.; Michaleris, P. Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process. Addit. Manuf. 2017, 16, 73–80. [Google Scholar] [CrossRef]
- ASM Aerospace Specification Metals Inc. Special Metals INCONEL® Alloy 718. Available online: https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=NINC34 (accessed on 22 July 2024).
- Knapp, G.L.; Raghavan, N.; Plotkowski, A.; DebRoy, T. Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing. Addit. Manuf. 2019, 25, 511–521. [Google Scholar] [CrossRef]
- Stainless Steel-Grade 316 (UNS S31600). AZO Materials. Available online: https://www.azom.com/properties.aspx?ArticleID=863 (accessed on 22 July 2024).
- ASM Aerospace Specification Metals Inc. AISI Type 316L Stainless Steel, Annealed Bar. Available online: https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ316Q (accessed on 22 July 2024).
Aspect Ratio | L-Shape | Powder | Substrate |
---|---|---|---|
Average | 1.04 | 1.64 | 2.29 |
Minimum | 1.00 | 1.00 | 1.00 |
Maximum | 1.66 | 4.52 | 5.61 |
Thermal Loading and Boundary Conditions | |||
---|---|---|---|
Step | Description | 316L steel substrate | IN718 L-Shape and Powder |
1 | Initialization | Substrate initialized to 200 °C | Deposited material progressively initialized to 23 °C |
2 | Material Deposition/Printing | Nodes on substrate bottom surface fixed to 200 °C | Constant convection and radiation applied to exterior surfaces with sink temperature of 200 °C |
Concentrated moving heat source dictated by event series applied to L-shape part | |||
3 | Cooling | Nodes on substrate bottom surface fixed to 23 °C | Constant convection and radiation applied to exterior surfaces with sink temperature of 23 °C |
Thermal | EPP | EMMI | |
---|---|---|---|
Thread Count | 32 | 60 | 60 |
Element Count | 688,636 | 540,176 | 540,176 |
Runtime (h) | 62.6 | 17.2 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Failla, D.P., Jr.; Dantin, M.J.; Nguyen, C.J.; Priddy, M.W. Material Model Fidelity Comparison for the Efficacy of Predicting Residual Stresses in L-PBF Additively Manufactured IN718 Components. Metals 2024, 14, 1210. https://doi.org/10.3390/met14111210
Failla DP Jr., Dantin MJ, Nguyen CJ, Priddy MW. Material Model Fidelity Comparison for the Efficacy of Predicting Residual Stresses in L-PBF Additively Manufactured IN718 Components. Metals. 2024; 14(11):1210. https://doi.org/10.3390/met14111210
Chicago/Turabian StyleFailla, David P., Jr., Matthew J. Dantin, Chuyen J. Nguyen, and Matthew W. Priddy. 2024. "Material Model Fidelity Comparison for the Efficacy of Predicting Residual Stresses in L-PBF Additively Manufactured IN718 Components" Metals 14, no. 11: 1210. https://doi.org/10.3390/met14111210
APA StyleFailla, D. P., Jr., Dantin, M. J., Nguyen, C. J., & Priddy, M. W. (2024). Material Model Fidelity Comparison for the Efficacy of Predicting Residual Stresses in L-PBF Additively Manufactured IN718 Components. Metals, 14(11), 1210. https://doi.org/10.3390/met14111210