Phase Transformation, Microstructural Evolution and Tensile Properties of a TiH2-Based Powder Metallurgy Pure Titanium
Abstract
:1. Introduction
2. Materials and Experimental Methods
3. Results and Discussion
3.1. Phase Transformations of TiH2 Power Compact
3.2. Microstructural Characteristics of As-Sintered TiH2 Power Compact
3.3. Thermal Analysis of TiH2 Powder Compact
3.4. Microstructural Evolution of TiH2 Powder Compact After Thermal Mechanical Consolidation
3.5. Tensile Properties and Fractural Morphologies of Hot Extruded Bar
4. Conclusions
- 1.
- The phase transition sequence of TiH2 powder compact heated up to 1000 °C under vacuum at a heating rate of 10 °C/min is TiH1.971 → TiH2 + TiH + TiH0.71 + α(H) → TiH + TiH0.71 + α(H) → TiH + TiH0.71 + α(H) + β(H) → α(H) → α. Subsequently, an equiaxed microstructure is received owing to complete dehydrogenation after holding for 25 min at 700 °C.
- 2.
- Increasing the heating rate and avoiding the intense dehydrogenation to retain hydrogen-rich β (β(H)) and TiHx aciculae at the interface is a feasible method of fabricating hierarchical α-Ti structures. A dense fine lamellar microstructure is produced after TiH2 powder compact induction-heated to 1100 °C accompanied with hot extrusion.
- 3.
- After vacuum dehydrogenation annealing, α precipitations in β matrix grow rapidly to form βt domains accompanied with the broadening of previous α-laths owing to the thorough decomposition of β(H) and TiHx, and a novel composite α/βt lamellar microstructure is obtained.
- 4.
- An enhanced strength of 746 MPa is received and elongation to fracture is increased from 19.8% to 33.8% in the α/βt lamellar microstructure. βt structures are proven to be beneficial for the improvement in tensile ductility.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lutjering, G.; Williams, J.C. Titanium, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Li, X.; Lu, K. Improving sustainability with simpler alloys. Science 2019, 364, 733–734. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Huang, S.; Feng, Y.; Shan, D. Hydrogen induced softening mechanism in near alpha titanium alloy. J. Alloys Compd. 2012, 541, 60–64. [Google Scholar]
- Sozańska, M. Positive Effect of Hydrogen Treatment in Titanium Ti-6Al-4V Alloy. Solid State Phenom. 2011, 183, 179–184. [Google Scholar] [CrossRef]
- Niu, H.Z.; Yin, B.G.; Zhang, H.R.; Zang, M.C.; Tan, H.; Zhang, D.L. Multiphase polymorphic nanoparticles reinforced titanium matrix composite produced by selective electron beam melting of a prealloyed composite powder. Scr. Mater 2021, 200, 113916. [Google Scholar] [CrossRef]
- Chen, T.; Yang, C.; Liu, Z.; Ma, H.W.; Kang, L.M.; Wang, Z.; Zhang, W.W.; Li, D.D.; Li, N.; Li, Y.Y. Revealing dehydrogenation effect and resultant densification mechanism during pressureless sintering of TiH2 powder. J. Alloys Compd. 2021, 873, 159792. [Google Scholar] [CrossRef]
- Chen, T.; Suryanarayana, C.; Yang, C. Advanced titanium materials processed from titanium hydride powder. Powder Technol. 2023, 423, 118504. [Google Scholar] [CrossRef]
- Ma, G.; Cheng, T.; Jia, H.; Yuan, L.; Ivasishin, O.M.; Savvakin, D.G. A novel method to fabricate high strength and ductility Ti-3Al-5Mo-4.5 V alloy based on TiH2 and pre-hydrogenated master alloy powders. Mater. Des. 2023, 227, 111791. [Google Scholar] [CrossRef]
- Paramore, J.D.; Fang, Z.Z.; Sun, P.; Koopman, M.; Chandran, K.S.R.; Dunstan, M. A powder metallurgy method for manufacturing Ti-6Al-4V with wrought-like microstructures and mechanical properties via hydrogen sintering and phase transformation (HSPT). Scripta Mater 2015, 107, 103–106. [Google Scholar] [CrossRef]
- Paramore, J.D.; Fang, Z.Z.; Dunstan, M.; Sun, P.; Butler, B.G. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys. Sci. Rep. 2017, 7, 41444. [Google Scholar] [CrossRef]
- Sun, P.; Fang, Z.Z.; Koopman, M.; Xia, Y.; Paramore, J.; Chandran, K.S.R.; Ren, Y.; Lu, J. Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V. Metall. Mater. Trans. A 2015, 46, 5546–5560. [Google Scholar] [CrossRef]
- Sun, P.; Fang, Z.Z.; Koopman, M.; Paramore, J.; Chandran, K.S.R.; Ren, Y.; Lu, J. An experimental study of the (Ti–6Al–4V)–xH phase diagram using in situ synchrotron XRD and TGA/DSC techniques. Acta Mater. 2015, 84, 29–41. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, X.; Liang, J.; Zhang, D. Microstructures and Tensile Mechanical Properties of Titanium Rods Made by Powder Compact Extrusion of a Titanium Hydride Powder. Metall. Mater. Trans. A 2016, 47, 1842–1853. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J.C. Perspectives on Titanium Science and Technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, S.; Wang, Y.; Zhang, D. Enhancement of tensile strength and ductility of titanium with a bimodal structure. Mater. Sci. Eng. A 2021, 803, 140701. [Google Scholar] [CrossRef]
- Mimoto, T.; Umeda, J.; Kondoh, K. Strengthening behaviour and mechanisms of extruded powder metallurgy pure Ti materials reinforced with ubiquitous light elements. Powder Metall. 2016, 59, 223–228. [Google Scholar] [CrossRef]
- Chen, G.; Liss, K.D.; Auchterlonie, G.; Tang, H.P.; Cao, P. Dehydrogenation and Sintering of TiH2: An In Situ Study. Metall. Mater. Trans. A 2017, 48, 2949–2959. [Google Scholar] [CrossRef]
- Okamoto, H. Supplemental Literature Review of Binary Phase Diagrams: Be-Mo, Cr-Ni, Fe-Sc, Gd-Mn, H-Ti, Lu-Mn, Mg-Sr, Mn-Sc, Mn-Si, Mn-Y, Sb-Sm, and V-Zr. J. Phase Equilibria Diffus. 2017, 38, 829–842. [Google Scholar] [CrossRef]
- Chirico, C.; Tsipas, S.A.; Wilczynski, P.; Gordo, E. Beta Titanium Alloys Produced from Titanium Hydride: Effect of Alloying Elements on Titanium Hydride Decomposition. Metals 2020, 10, 682. [Google Scholar] [CrossRef]
- Jang, J.M.; Lee, W.S.; Ko, S.H.; Kim, I.H.; Son, S.H.; Jung, D.W. Microstructures and Oxygen Reduction of Recycled TiH2 Powders during Sintering. Adv. Mater. Res. 2008, 47–50, 995–998. [Google Scholar] [CrossRef]
- Ma, M.; Wang, L.; Wang, Y.; Xiang, W.; Lyu, P.; Tang, B.; Tan, X. Effect of hydrogen content on hydrogen desorption kinetics of titanium hydride. J. Alloys Compd. 2017, 709, 445–452. [Google Scholar] [CrossRef]
- Kværndrup, F.B.; Somers, M.A.J.; Christiansen, T.L. Extreme Expansion and Reversible Hydrogen Solubility in h.c.p. Titanium Stabilized by Colossal Interstitial Alloying. Metall. Mater. Trans. A 2021, 52, 4997–5003. [Google Scholar] [CrossRef]
- Middlemas, S.; Fang, Z.Z.; Fan, P. A new method for production of titanium dioxide pigment. Hydrometallurgy 2013, 131–132, 107–113. [Google Scholar] [CrossRef]
- Liu, T.; Germain, L.; Teixeira, J.; Aeby-Gautier, E.; Gey, N. Hierarchical criteria to promote fast and selective αGB precipitation at β grain boundaries in β-metastable Ti-alloys. Acta Mater. 2017, 141, 97–108. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, K.; Zhou, Y.; Zhu, X.; Xin, R.; Liu, Q. Crystallographic orientation dependent crack nucleation during the compression of a widmannstätten-structure α/β titanium alloy. Scr. Mater. 2018, 156, 110–114. [Google Scholar] [CrossRef]
- Liu, H.; He, P.; Feng, J.C.; Cao, J. Kinetic study on nonisothermal dehydrogenation of TiH2 powders. Int. J. Hydrogen Energy 2009, 34, 3018–3025. [Google Scholar] [CrossRef]
- Zhang, H.R.; Niu, H.Z.; Zang, M.C.; Zhang, Y.H.; Liu, S.; Zhang, D.L. Tensile properties and deformation behavior of an extra-low interstitial fine-grained powder metallurgy near alpha titanium alloy by recycling coarse pre-alloyed powder. J. Mater. Sci. Technol. 2022, 129, 96–107. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Bayat, M.; Tan, Q.; Yin, Y.; Fan, Z.; Liu, S.; Hattel, J.H.; Dargusch, M.; Zhang, M.-X. Achieveing high ductility in a selectively laser melted commercial pure-titanium via in-situ grain refinement. Scr. Mater. 2021, 191, 155–160. [Google Scholar] [CrossRef]
Titanium Hydride | Crystal System | Crystallographic Parameter (Å) | Space Group Symbol/Number | Density (g/cm3) | |
---|---|---|---|---|---|
TiH1.971 | 07-0370 | FCC | a = b = c = 4.44 | Fmm/225 | 3.87–3.94 |
TiH2 | 09-0371 | Tetragonal | a = b = 3.12, c = 4.18 | I4/mmm/139 | 3.88–4.074 |
* TiH | 44-1217 | Orthorhombic | a = 4.18, b = 4.22, c = 4.585 | Cccm/66 | 4.02 |
* TiH0.71 | 40-0980 | Orthorhombic | a = 4.34, b = 4.18, c = 4.02 | - | - |
β(H) | 44-1288 | BCC | a = 3.31 | Imm/229 | 4.4 |
TiH(α(H)) | mp-998969 | HCP | a = 2.88, c = 5.26 | P62/mmmc/194 | 4.3 |
α | 11-1294 | HCP | a = 2.95, c = 4.68 | P63/mmc/194 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, C.; Guo, J.; Li, W.; Cheng, C.; Xiang, N.; Huang, T.; Niu, H.; Zhang, D.; Chen, F. Phase Transformation, Microstructural Evolution and Tensile Properties of a TiH2-Based Powder Metallurgy Pure Titanium. Metals 2024, 14, 1218. https://doi.org/10.3390/met14111218
Zhang H, Wang C, Guo J, Li W, Cheng C, Xiang N, Huang T, Niu H, Zhang D, Chen F. Phase Transformation, Microstructural Evolution and Tensile Properties of a TiH2-Based Powder Metallurgy Pure Titanium. Metals. 2024; 14(11):1218. https://doi.org/10.3390/met14111218
Chicago/Turabian StyleZhang, Hairui, Cong Wang, Junqing Guo, Wuhui Li, Chu Cheng, Nan Xiang, Tao Huang, Hongzhi Niu, Deliang Zhang, and Fuxiao Chen. 2024. "Phase Transformation, Microstructural Evolution and Tensile Properties of a TiH2-Based Powder Metallurgy Pure Titanium" Metals 14, no. 11: 1218. https://doi.org/10.3390/met14111218
APA StyleZhang, H., Wang, C., Guo, J., Li, W., Cheng, C., Xiang, N., Huang, T., Niu, H., Zhang, D., & Chen, F. (2024). Phase Transformation, Microstructural Evolution and Tensile Properties of a TiH2-Based Powder Metallurgy Pure Titanium. Metals, 14(11), 1218. https://doi.org/10.3390/met14111218