Improving the Bio-Tribological Properties of Ti6Al4V Alloy via Combined Treatment of Femtosecond Laser Nitriding and Texturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Femtosecond Laser Nitriding-Texturing Combined Treatment
2.3. Surface Topography and Microstructure Characterization
2.4. Bio-Tribological Tests
3. Results and Discussion
3.1. Surface Morphologies
3.2. Microstructure and Microhardness
3.3. Tribological Properties in SBF
4. Conclusions
- (1)
- After femtosecond nitriding, a nitrided layer composed of TiNx(x≤1) and nitrogenrich α’-Ti formed on the surface with a thickness of 73 μm. The TiNx(x≤1) phase appeared as fine dendrites and particles, while lath-like α’-Ti was distributed between the dendrites.
- (2)
- The surface hardness increased from 336 HV to 1455 HV with the wear resistance significantly improved after femtosecond laser nitriding. However, the COF of the nitrided surface rose from 0.388 to 0.655 due to the increased roughness and the generation of hard debris.
- (3)
- The COF of the nitride-textured surface decreased to 0.408 with the optimal texture density of 65% due to the synergistic effects of textures in debris trapping, the suppression of crack propagation, and reduction in contact area.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussein, M.A.; Kumar, A.M.; Yilbas, B.S.; Al-Aqeeli, N. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid. J. Mater. Eng. Perform. 2017, 26, 5553–5562. [Google Scholar] [CrossRef]
- Man, H.C.; Bai, M.; Cheng, F.T. Laser diffusion nitriding of Ti–6Al–4V for improving hardness and wear resistance. Appl. Surf. Sci. 2011, 258, 436–441. [Google Scholar] [CrossRef]
- Senthilselvan, J.; Monisha, K.; Gunaseelan, M.; Yamini, S.; Kumar, S.A.; Kanimozhi, K.; Manonmani, J.; Shariff, S.M.; Padmanabham, G. High power diode laser nitriding of titanium in nitrogen gas filled simple acrylic box container: Microstructure, phase formation, hardness, dendrite and martensite solidification analyses. Mater. Charact. 2020, 160, 110118. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, M.; Yin, Y.; Lin, W.; Huang, H. Laser gas alloying of Ti-6Al-4V in air for tribological applications. Appl. Surf. Sci. 2021, 570, 151125. [Google Scholar] [CrossRef]
- Guan, Z.; Huo, K.; Qian, W.; Li, Z.; Chen, R.; Dai, F.; Zou, S.; Hua, Y.; Cai, J. Effect of low-temperature annealing on microstructure and mechanical properties of Ti6Al4V produced by laser shock peening. Mater. Sci. Eng. A 2023, 880, 145317. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, W.; Luo, K.; Lu, H.; Lu, J. Strengthening mechanism in thermomechanical fatigue properties of Ti6Al4V titanium alloy by laser shock peening. Int. J. Fatigue 2023, 172, 107631. [Google Scholar] [CrossRef]
- Mao, B.; Siddaiah, A.; Liao, Y.; Menezes, P.L. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. J. Manuf. Process. 2020, 53, 153–173. [Google Scholar] [CrossRef]
- Zong, X.; Wang, H.; Li, Z.; Li, J.; Cheng, X.; Zhu, Y.; Tian, X.; Tang, H. Laser nitridation on Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy. Surf. Coat. Technol. 2020, 386, 125425. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, Z.; Meng, D.; Li, Y.; Jiang, X.; Li, J.; Wang, J.; Jiao, L.; Zhao, B.; Wang, L.; et al. Microstructure evolution and vacuum tribological properties of surface nitriding layer on a TiZrAlV alloy fabricated by laser nitriding. J. Mater. Res. Technol. 2023, 24, 928–939. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, B.; Lai, W.; Zhang, G.; Zeng, R.; Li, W.; Wang, X. Improved tribological properties, cyto-biocompatibility and anti-inflammatory ability of additive manufactured Ti-6Al-4V alloy through surface texturing and nitriding. Surf. Coat. Technol. 2021, 425, 127686. [Google Scholar] [CrossRef]
- Chang, X.; Smith, G.C.; Quinn, J.; Carson, L.; Chan, C.W.; Lee, S. Optimization of anti-wear and anti-bacterial properties of beta TiNb alloy via controlling duty cycle in open-air laser nitriding. J. Mech. Behav. Biomed Mater. 2020, 110, 103913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, C.; Huang, H.; Yan, J.; Zhang, L.; Jiang, M.; Zhang, Z. Achieving ultra-low wear of Ti6Al4V alloy by introducing a sinusoidal nitriding layer via nanosecond pulsed laser irradiation. Tribol. Int. 2024, 200, 110113. [Google Scholar] [CrossRef]
- Xin, Z.; Ren, N.; Ren, Y.; Yue, X.; Han, Q.; Zhou, W.; Tao, Y.; Ye, Y. In-situ nitriding on the textured titanium alloy using femtosecond laser. J. Mater. Res. Technol. 2022, 19, 466–471. [Google Scholar] [CrossRef]
- Wang, M.-Z.; Kang, J.-J.; Yue, W.; Fu, Z.-Q.; Zhu, L.-N.; She, D.-S.; Wang, C.-B. Effects of combined treatment of plasma nitriding and laser surface texturing on vacuum tribological behavior of titanium alloy. Mater. Res. Express 2019, 6, 066511. [Google Scholar] [CrossRef]
- Xu, S.; Cao, Y.; Duan, B.; Liu, H.; Wang, J.; Si, C. Enhanced strength and sliding wear properties of gas nitrided Ti-6Al-4V alloy by ultrasonic shot peening pretreatment. Surf. Coat. Technol. 2023, 458, 129325. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Klobčar, D.; Podgornik, B. Tribological response of laser-textured Ti6Al4V alloy under dry conditions and lubricated with Hank’s solution. Tribol. Int. 2021, 160, 107049. [Google Scholar] [CrossRef]
- Xue, X.; Lu, L.; Wang, Z.; Li, Y.; Guan, Y. Improving tribological behavior of laser textured Ti-20Zr-10Nb-4Ta alloy with dimple surface. Mater. Lett. 2021, 305, 130876. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, C.; Wang, Y.; Zhao, W.; Li, J.; Yao, Y. A novel strategy to enhance the tribological properties of Cr/GLC films in seawater by surface texturing. Surf. Coat. Technol. 2015, 280, 338–346. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Zhao, H.; Zhang, G.; Ren, T.; Zhang, Y. Enhanced anticorrosion and antiwear properties of Ti–6Al–4V alloys with laser texture and graphene oxide coatings. Tribol. Int. 2020, 152, 106475. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, H.; Li, S.; Wang, X.; Sheng, Y.; Zhang, P.; Li, W. Combined effect of TiN coating and surface texture on corrosion-wear behavior of selective laser melted CP-titanium in simulated body fluid. J. Alloys Compd. 2020, 816, 152667. [Google Scholar] [CrossRef]
- Wu, G.; Yin, Y.; Zhang, S.; Wang, Y.; Xiang, Y.; Li, L.; Yao, J. Effect of laser texturing on the antiwear properties of micro-arc oxidation coating formed on Ti-6Al-4V. Surf. Coat. Technol. 2023, 453, 129114. [Google Scholar] [CrossRef]
- Qian, W.; Guan, Z.; Huo, K.; Xin, Z.; Li, Z.; Hua, Y.; Cai, J. A study on the thermal cyclic behavior of NiCrAlY coatings via femtosecond laser remelting with high repetition rate. Surf. Coat. Technol. 2024, 482, 130724. [Google Scholar] [CrossRef]
- Yuan, S.; Lin, N.; Zou, J.; Lin, X.; Liu, Z.; Yu, Y.; Wang, Z.; Zeng, Q.; Chen, W.; Tian, L.; et al. In-situ fabrication of gradient titanium oxide ceramic coating on laser surface textured Ti6Al4V alloy with improved mechanical property and wear performance. Vacuum 2020, 176, 109327. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Zhang, G.; Wang, G.; Zeng, Z.; Wang, C.; Wang, C.; Zhao, S.; Zhang, Y.; Ren, T. Electrochemical corrosion and anisotropic tribological properties of bioinspired hierarchical morphologies on Ti-6Al-4V fabricated by laser texturing. Tribol. Int. 2019, 134, 352–364. [Google Scholar] [CrossRef]
- Grabowski, A.; Florian, T.; Wieczorek, J.; Adamiak, M. Structuring of the Ti6Al4V alloy surface by pulsed laser remelting. Appl. Surf. Sci. 2021, 535, 147618. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Z.; Hu, J. Effect of Nanosecond Laser-Textured Ablation on Performance of Ti6Al4V Alloy Prepared by Composite Nitriding Process. Metall. Mater. Trans. A 2021, 52, 3289–3301. [Google Scholar] [CrossRef]
- Zuhlke, C.A.; Anderson, T.P.; Alexander, D.R. Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses. Opt. Express 2013, 21, 8460–8473. [Google Scholar] [CrossRef] [PubMed]
- Sedao, X.; Lenci, M.; Rudenko, A.; Faure, N.; Pascale-Hamri, A.; Colombier, J.P.; Mauclair, C. Influence of pulse repetition rate on morphology and material removal rate of ultrafast laser ablated metallic surfaces. Opt. Lasers Eng. 2019, 116, 68–74. [Google Scholar] [CrossRef]
- Wen, H.; Zeng, C.; Hemmasian Ettefagh, A.; Gao, J.; Guo, S. Laser surface treatment of Ti-10Mo alloy under Ar and N2 environment for biomedical application. J. Laser Appl. 2019, 31, 022012. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, H.; Liu, H.; Li, S.; Li, W.; Wang, X. In vitro bio-tribological behaviour of textured nitride coating on selective laser melted Ti-6Al-4V alloy. Surf. Coat. Technol. 2021, 409, 126904. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, P.; Ma, X.; Wan, S.; Chen, J.; Hu, W.; Wang, W.; Yi, G.; Zhao, J. Microstructure evolution and wear mechanism of in situ prepared Ti–TiN cermet layers at high temperature. Compos. Part B Eng. 2022, 242, 110028. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, Q.; Yi, G.; Wang, W.; Liu, Y. The microstructures and mechanical properties of martensite Ti and TiN phases in a Ti6Al4V laser-assisted nitriding layer. Mater. Charact. 2021, 178, 111262. [Google Scholar] [CrossRef]
- He, D.; Zheng, S.; Pu, J.; Zhang, G.; Hu, L. Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film. Tribol. Int. 2015, 82, 20–27. [Google Scholar] [CrossRef]
- Arslan, A.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Mosarof, M.H.; Mufti, R.A.; Quazi, M.M.; Khuong, L.S.; Liaqat, M.; Jamshaid, M.; et al. Investigation of laser texture density and diameter on the tribological behavior of hydrogenated DLC coating with line contact configuration. Surf. Coat. Technol. 2017, 322, 31–37. [Google Scholar] [CrossRef]
Fe | C | N | H | O | Al | V | Ti |
---|---|---|---|---|---|---|---|
≤0.30 | ≤0.10 | ≤0.05 | ≤0.015 | ≤0.20 | 5.5–6.8 | 3.5–4.5 | Bal. |
Processing Parameters | FLN | FLT |
---|---|---|
Pulse width (τp) | 270 fs | 270 fs |
Repetition rate (frep) | 19 MHz | 200 kHz |
Single pulse energy (Ep) | 1.74 μJ | 20.00 μJ |
Laser power (P) | 33 W | 4 W |
Scanning speed (ν) | 40 mm/s | 200 mm/s |
Scanning distance (d1) | 20 μm | |
Scanning distance (d2) | 10 μm | |
Scanning distance (d3) | 200 μm/250 μm/300 μm |
Sample | Type of Laser Modified | Texture Width (W, μm) | Texture Density (D, %) |
---|---|---|---|
A0 | – | – | – |
N0 | FLN | 0 | 0 |
T1 | FLN-FLT | 130 | 55% |
T2 | FLN-FLT | 180 | 65% |
T3 | FLN-FLT | 230 | 75% |
Element (At%) | Point A | Point B | Point C | Point D |
---|---|---|---|---|
N | 3.02 | 1.03 | 7.59 | 17.93 |
O | 34.11 | 17.26 | 51.21 | 56.71 |
P | 0.54 | 0.52 | 4.53 | 2.26 |
Ca | 0.56 | 0.72 | 5.02 | 1.88 |
Si | 2.08 | 1.27 | 10.25 | 3.13 |
Ti | 59.13 | 78.48 | 20.24 | 17.01 |
Na | 0.56 | 0.72 | 1.16 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Z.; Ren, N.; Qian, W.; Tang, Y.; Lin, Q. Improving the Bio-Tribological Properties of Ti6Al4V Alloy via Combined Treatment of Femtosecond Laser Nitriding and Texturing. Metals 2024, 14, 1224. https://doi.org/10.3390/met14111224
Xin Z, Ren N, Qian W, Tang Y, Lin Q. Improving the Bio-Tribological Properties of Ti6Al4V Alloy via Combined Treatment of Femtosecond Laser Nitriding and Texturing. Metals. 2024; 14(11):1224. https://doi.org/10.3390/met14111224
Chicago/Turabian StyleXin, Zhiduo, Naifei Ren, Wei Qian, Yunqing Tang, and Qing Lin. 2024. "Improving the Bio-Tribological Properties of Ti6Al4V Alloy via Combined Treatment of Femtosecond Laser Nitriding and Texturing" Metals 14, no. 11: 1224. https://doi.org/10.3390/met14111224
APA StyleXin, Z., Ren, N., Qian, W., Tang, Y., & Lin, Q. (2024). Improving the Bio-Tribological Properties of Ti6Al4V Alloy via Combined Treatment of Femtosecond Laser Nitriding and Texturing. Metals, 14(11), 1224. https://doi.org/10.3390/met14111224