Microstructure and Properties of 7050-T74 Aluminum Alloys with Different Zn/Mg Ratios
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructure
3.2. Tensile Properties
3.3. Corrosion Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.; Liu, B.; Zhang, S. The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review. Metals 2021, 11, 718–747. [Google Scholar] [CrossRef]
- Wang, J.; Li, F. Research Status and Prospective Properties of the Al-Zn-Mg-Cu Series Aluminum Alloys. Metals 2023, 13, 1329–1353. [Google Scholar] [CrossRef]
- Xie, P.; Chen, S.Y.; Chen, K.H.; Jiao, H.B.; Huang, L.P. Enhancing the Stress Corrosion Cracking Resistance of a Low-Cu Containing Al-Zn-Mg-Cu Aluminum Alloy by Step-Quench and Aging Heat Treatment. Corros. Sci. 2019, 161, 108184. [Google Scholar] [CrossRef]
- Tang, J.W.; Wang, Y.F.; Fujihara, H.; Shimizu, K.; Hirayama, K.; Ebihara, K.; Takeuchi, A.; Uesugi, M.; Toda, H. Stress Corrosion Cracking Induced by the Combination of External and Internal Hydrogen in Al-Zn-Mg-Cu Alloy. Scripta. Mater. 2023, 239, 115804. [Google Scholar] [CrossRef]
- Khan, M.B.; Wang, Y.W.; Afifi, M.A.; Malik, A.; Nazeer, F.; Yasin, G.; Bao, J.W.; Zhang, H. Microstructure and Mechanical Properties of an Al-Zn-Cu-Mg Alloy Processed by Hot Forming Processes Followed by Heat Treatments. Mater. Charact. 2019, 157, 109901. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Guo, H.; Liu, J.; Sheng, X. Effect of Cu on the Hot Tearing Susceptibility of Al-6Zn-2.5Mg-xCu Alloy. Int. J. Met. 2021, 15, 130–140. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Lu, B.; Yu, W.; Wang, H.Y.; Xu, G.M.; Wang, Z.D. Effect of Cu Content and Zn/Mg Ratio on Microstructure and Mechanical Properties of Al–Zn–Mg–Cu Alloys. J. Mater. Res. Technol. 2022, 19, 3451–3460. [Google Scholar] [CrossRef]
- Lachowicz, M.M. Metallurgical Aspects of Corrosion Resistance of 7000 Series Aluminum Alloys-a Review. Mater. Sci.-Poland 2023, 41, 159–180. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Mo, Y.K.; Nie, Z.R. Effect of Zn Content on the Microstructure and Properties of Super-high Strength Al-Zn-Mg-Cu Alloys. Metall. Mater. Trans. A 2013, 44, 3910–3920. [Google Scholar] [CrossRef]
- Gao, R.S.; Li, Y.N.; Li, Z.H.; Li, X.W.; Wen, K.; Zhang, Y.A.; Xiong, B.Q. Quantitative Relationship between Microstructure and Tensile Properties of Al-Zn-Mg-Cu Alloys with Various Alloying Degrees. J. Mater. Res. Technol. 2022, 18, 5394–5405. [Google Scholar] [CrossRef]
- Jiang, H.T.; Xing, H.; Yang, B.; Liang, E.Q.; Zhang, J.; Sun, B.D. Effect of Zn Content and Sc、Zr Addition on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloys. J. Alloys Compd. 2023, 947, 169246. [Google Scholar] [CrossRef]
- Chen, S.Y.; Li, J.; Hu, G.Y.; Chen, K.H.; Huang, L.P. Effect of Zn/Mg Ratios on SCC, Electrochemical Corrosion Properties and Microstructure of Al-Zn-Mg Alloy. J. Alloys Compd. 2018, 757, 259–264. [Google Scholar] [CrossRef]
- Wang, S.; Luo, B.; Bai, Z.; He, C.; Tan, S.; Jiang, M. Effect of Zn/Mg Ratios on Microstructure and Stress corrosion Cracking of 7005 Alloy. Materials 2019, 12, 285–297. [Google Scholar] [CrossRef]
- Dixit, M.; Mishra, R.S.; Sankaran, K.K. Structure-property Correlations in Al 7050 and Al 7055 High-strength Aluminum Alloys. Mater. Sci. Eng. A 2008, 478, 163–172. [Google Scholar] [CrossRef]
- Wang, H.B.; Gao, A.N.; Song, H.; Xu, Z.; Li, S.L. Effect of Ti Addition on Microstructures and Crack Behavior of Twin-Roll Cast-Rolled 7050 Alloy Plate. Rare Metal Mater. Eng. 2020, 49, 4055–4063. [Google Scholar]
- She, H.; Chu, W.; Shu, D.; Wang, J.; Sun, B.D. Effects of Silicon Content on Microstructure and Stress Corrosion Cracking Resistance of 7050 Aluminum Alloy. Trans. Nonferr. Metals Soc. China 2014, 24, 2307–2313. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.Y.; Bai, S.; Zhao, J.G.; Liu, G.H. The Effect of Multistage Aging on Mechanical Properties and Microstructure of Forged 7050 Aluminum Alloys. J. Mater. Eng. Perform. 2019, 28, 3590–3599. [Google Scholar] [CrossRef]
- Zheng, J.H.; Pan, R.; Li, C.; Zhang, W.; Lin, J.G.; Davies, C.M. Experimental Investigation of Multi-step Stress-relaxation-ageing of 7050 Aluminium Alloy for Different Pre-strained Conditions. Mater. Sci. Eng. A 2018, 710, 111–120. [Google Scholar] [CrossRef]
- GBT7998-2005; Test Method for Intergranular Corrosion of Aluminium Alloy. The Standardization Administration of China: Beijing, China, 2005.
- GBT22639-2008; Test Method of Exfoliation Corrosion for Wrought Aluminium and Aluminium Alloys. The Standardization Administration of China: Beijing, China, 2008.
- Fu, X.Q.; Ji, Y.C.; Cheng, X.Q.; Dong, C.F.; Fan, Y.; Li, X.G. Effect of Grain Size and Its Uniformity on Corrosion Resistance of Rolled 316L Stainless Steel by EBSD and TEM. Mater. Today Commun. 2020, 25, 101429. [Google Scholar] [CrossRef]
- Nazari, F.; Honarpisheh, M.; Zhao, H.Y. The Effect of Microstructure Parameters on the Residual Stresses in the Ultrafine-grained Sheets. Micron 2020, 132, 102843. [Google Scholar] [CrossRef]
- Huang, Y.K.; Zhao, Y.X.; Liu, Y.; Xiao, Z.B.; Yang, L.; Huang, Y.C. Microstructural Evolution and Phase Transformation Behavior of Al-8.1Zn-2.0Mg-1.0Cu-0.2Ag-0.15Zr Alloy During Isothermal Compression. J. Mater. Res. Technol 2024, 33, 1018–1031. [Google Scholar] [CrossRef]
- Choundraj, J.D.; Kacher, J. Influence of Misorientation Angle and Local Dislocation Density on β-Phase Distribution in Al 5xxx Aloys. Sci. Rep. 2022, 12, 1817. [Google Scholar] [CrossRef] [PubMed]
- Ryen, Ø.; jørn Holmedal, B.; Oscar Nijs, O.; Erik Nes, E.; Emma Sjölander, E.; Ekström, H.K. Strengthening Mechanisms in Solid solution Aluminum Alloys. Metall. Mater. Trans. 2006, 37, 1999–2006. [Google Scholar] [CrossRef]
- Liu, W.B.; Liu, Y.; Sui, H.N.; Chen, L.R.; Yu, L.; Yi, X.; Duan, H.L. Dislocation-grain Boundary Interaction in Metallic Materials: Competition between Dislocation Transmission and Dislocation Source Activation. J. Mech. Phys. Solids. 2020, 145, 104158. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.W.; Moon, B.G.; Kim, H.S.; Kim, y.m.; Park, S.H. Influence of Extrusion Temperature on Dynamic Deformation Behaviors and Mechanical Properties of Mg-8Al-0.5Zn-0.2Mn-0.3Ca-0.2Y Alloy. J. Mater. Res. Technol. 2019, 8, 5254–5270. [Google Scholar] [CrossRef]
- Wu, M.D.; Yao, T.; Xiao, D.H.; Yuan, S.; Li, Z.Y.; Huang, L.P.; Liu, W.S. Precipitation Behavior and Properties of an Al-8.26Zn-1.95Mg-1.89Cu-0.08Sc-0.17Zr Alloy with Different Dislocation Morphologies via Pre-treatment. J. Mater. Res. Technol. 2024, 29, 4714–4727. [Google Scholar] [CrossRef]
- Luo, Y.H. Improved Voigt and Reuss Formulas with the Poisson Effect. Materials 2022, 15, 5656. [Google Scholar] [CrossRef]
- Cai, B.; Adams, B.L.; Nelson, T.W. Relation between Precipitate-free Zone Width and Grain Boundary Type in 7075-T7 Al Alloy. Acta. Mater. 2007, 55, 1543–1553. [Google Scholar] [CrossRef]
- Najjar, D.; Magnin, T.; Warner, T.J. Influence of Critical Surface Defects and Localized Competition between Anodic Dissolution and Hydrogen Effects during Stress Corrosion Cracking of a 7050 Aluminium Alloy. Mater. Sci. Eng. A 1997, 238, 293–302. [Google Scholar] [CrossRef]
- Zou, Y.; Cao, L.; Wu, X.; Mou, C.; Tang, S.; Lin, X. Unusual Secondary Precipitation within the Primary Precipitation Free Zone Substantially Enhances the Ductility of Al-Zn-Mg-Cu Alloy. Mater. Sci. Eng. A 2023, 881, 145384–145390. [Google Scholar] [CrossRef]
- Peng, X.; Li, Y.; Xu, G.; Huang, J.; Yin, Z. Effect of Precipitate State on Mechanical Properties, Corrosion Behavior, and Microstructures of Al-Zn-Mg-Cu Alloy. Metals Mater. Inter. 2018, 24, 1046–1057. [Google Scholar] [CrossRef]
Alloy | Element/Mass Fraction | Zn/Mg Ratios | ||||
---|---|---|---|---|---|---|
Zn | Mg | Cu | Zr | Al | ||
Alloy 1 | 5.7 | 2.6 | 2.3 | 0.15 | Bal. | 2.19 |
Alloy 2 | 6.7 | 2.6 | 2.3 | 0.15 | Bal. | 2.58 |
Alloy 3 | 6.7 | 1.9 | 2.3 | 0.15 | Bal. | 3.53 |
Alloy | Element/Mass Fraction | Zn/Mg Ratios | ||||
---|---|---|---|---|---|---|
Zn | Mg | Cu | Zr | Al | ||
Alloy 1 | 5.79 | 2.45 | 2.10 | 0.11 | Bal. | 2.36 |
Alloy 2 | 6.95 | 2.55 | 2.09 | 0.13 | Bal. | 2.72 |
Alloy 3 | 6.76 | 1.76 | 2.07 | 0.12 | Bal. | 3.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, D.; He, Z.; Huang, L. Microstructure and Properties of 7050-T74 Aluminum Alloys with Different Zn/Mg Ratios. Metals 2024, 14, 1226. https://doi.org/10.3390/met14111226
Xiao D, He Z, Huang L. Microstructure and Properties of 7050-T74 Aluminum Alloys with Different Zn/Mg Ratios. Metals. 2024; 14(11):1226. https://doi.org/10.3390/met14111226
Chicago/Turabian StyleXiao, Daihong, Zongzheng He, and Lanping Huang. 2024. "Microstructure and Properties of 7050-T74 Aluminum Alloys with Different Zn/Mg Ratios" Metals 14, no. 11: 1226. https://doi.org/10.3390/met14111226
APA StyleXiao, D., He, Z., & Huang, L. (2024). Microstructure and Properties of 7050-T74 Aluminum Alloys with Different Zn/Mg Ratios. Metals, 14(11), 1226. https://doi.org/10.3390/met14111226