Trade-Off Between Wear/Corrosion Performance and Mechanical Properties in D-AlNiCo Poly-Quasicrystals Through CNT Addition to the Microstructure
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. ENP Process
2.3. MA and SPS Processes
2.4. Characterization and Testing
3. Results and Discussion
3.1. Microstructural Analysis and XRD Data
3.2. Compressive Performance at Room Temperature and 600 °C
3.3. Tribological Behavior
3.4. Corrosion Test
Sample | Ecorr (mV) | Icorr (µA.cm−2) |
---|---|---|
Pure Al | −861 | 0.42 |
AlNiCo QC | −270 | 0.12 |
AlNiCo/P QC | −471 | 0.38 |
AlNiCo/CNT QC | −324 | 0.2 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. [Google Scholar] [CrossRef]
- Novák, P.; Kubatík, T.; Vystrčil, J.; Hendrych, R.; Kříž, J.; Mlynár, J.; Vojtěch, D. Powder Metallurgy Preparation of Al–Cu–Fe Quasicrystals Using Mechanical Alloying and Spark Plasma Sintering. Intermetallics 2014, 52, 131–137. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, H.; Wang, L.; Ma, H.; Li, H.; Zhang, L.; He, Z. Porous Al63Cu25Fe12 Quasicrystals Covered with (Al11.5Fe13.9Cu19.7)O54.9 Nanosheets. Mater. Charact. 2019, 147, 165–172. [Google Scholar] [CrossRef]
- Dubois, J.-M. Properties- and Applications of Quasicrystals and Complex Metallic Alloys. Chem. Soc. Rev. 2012, 41, 6760–6777. [Google Scholar] [CrossRef]
- Fujiwara, T.; Ishii, Y. Quasicrystals; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 0080555977. [Google Scholar]
- Ramond, L.; Bernard-Granger, G.; Addad, A.; Guizard, C. Sintering of a Quasi-Crystalline Powder Using Spark Plasma Sintering and Hot-Pressing. Acta Mater. 2010, 58, 5120–5128. [Google Scholar] [CrossRef]
- Ferreira, T.; Koga, G.Y.; de Oliveira, I.L.; Kiminami, C.S.; Botta, W.J.; Bolfarini, C. Functionally Graded Aluminum Reinforced with Quasicrystal Approximant Phases—Improving the Wear Resistance at High Temperatures. Wear 2020, 462–463, 203507. [Google Scholar] [CrossRef]
- Kang, N.; El Mansori, M.; Lu, J.L.; Lin, X.; Huang, W.D. Effect of Selective Post-Aging Treatment on Subsurface Damage of Quasicrystal Reinforced Al Composite Manufactured by Selective Laser Melting. Wear 2019, 426–427, 934–941. [Google Scholar] [CrossRef]
- Steurer, W. Twenty Years of Structure Research on Quasicrystals. Part 1. Pentagonal, Octagonal, Decagonal and Dodecagonal Quasicrystals. Z. Krist. 2004, 219, 446. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Novák, P.; Veselý, M. Positive Temperature Dependence of Compressive Properties in an AlNiCo Poly-Quasicrystal Fabricated by Mechanical Alloying and Spark Plasma Sintering. Scr. Mater. 2020, 187, 169–174. [Google Scholar] [CrossRef]
- Edagawa, K.; Ohta, S.; Takeuchi, S.; Kabutoya, E.; Guo, J.Q.; Tsai, A.-P. Plasticity of Al-Ni-Co Decagonal Single Quasicrystals. Mater. Sci. Eng. A 2000, 294–296, 748–752. [Google Scholar] [CrossRef]
- Feuerbacher, M.; Schall, P. Plastic Behaviour of Decagonal Al–Ni–Co Single Quasicrystals. Scr. Mater. 2003, 49, 25–31. [Google Scholar] [CrossRef]
- Klyueva, M.; Shulyatev, D.; Andreev, N.; Tabachkova, N.; Sviridova, T.; Suslov, A. New Stable Icosahedral Quasicrystal in the System Al–Cu–Co–Fe. J. Alloys Compd. 2019, 801, 478–482. [Google Scholar] [CrossRef]
- Schall, P.; Feuerbacher, M.; Urban, K. Plastic Deformation Behaviour of Decagonal Al70Ni15Co15 Single Quasicrystals. Philos. Mag. Lett. 2001, 81, 339–349. [Google Scholar] [CrossRef]
- Alishahi, M.; Hosseini, S.M.; Monirvaghefi, S.M.; Saatchi, A. Synthesis and Passivation Behavior of Electroless Ni–P-CNT Composite Coating. Mater. Corros. 2013, 64, 212–217. [Google Scholar] [CrossRef]
- Alishahi, M.; Monirvaghefi, S.M.; Saatchi, A.; Hosseini, S.M. The Effect of Carbon Nanotubes on the Corrosion and Tribological Behavior of Electroless Ni–P–CNT Composite Coating. Appl. Surf. Sci. 2012, 258, 2439–2446. [Google Scholar] [CrossRef]
- Liu, H.; Zhai, X.; Li, Z.; Tao, X.; Liu, W.; Zhao, J.; Jiang, D.; Gao, S. Preparation and Electrochemical Hydrogen Storage Properties of MWCNTs-Doped Ti49Zr26Ni25 Alloy Containing Quasicrystal Phase. Solid State Sci. 2018, 83, 17–22. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Z.; Zhou, X.; Liu, H.; Sun, J.; Su, Z.; Liu, W.; Zhao, J. Improved Electrochemical Hydrogen Storage Properties of Ti49Zr26Ni25 Quasicrystal Alloy by Doping with Pd and MWCNTs. Int. J. Hydrogen Energy 2019, 44, 29356–29364. [Google Scholar] [CrossRef]
- Ma, H.; You, L.; He, Z. Stable Quaternary Al59Cr23Fe8Si10 Decagonal Quasicrystal. Mater. Charact. 2020, 166, 110424. [Google Scholar] [CrossRef]
- Wei, D.; He, Z. Multilayered Sandwich-like Architecture Containing Large-Scale Faceted Al–Cu–Fe Quasicrystal Grains. Mater. Charact. 2016, 111, 154–161. [Google Scholar] [CrossRef]
- Zupanič, F.; Wang, D.; Gspan, C.; Bončina, T. Precipitates in a Quasicrystal-Strengthened Al–Mn–Be–Cu Alloy. Mater. Charact. 2015, 106, 93–99. [Google Scholar] [CrossRef]
- Hosseini, S.; Novák, P. On the Formation of AlNiCo Nano-Quasicrystalline Phase during Mechanical Alloying through Electroless Ni-P Plating of Starting Particles. Materials 2019, 12, 2294. [Google Scholar] [CrossRef] [PubMed]
- Parsamehr, H.; Chang, S.-Y.; Lai, C.-H. Mechanical and Surface Properties of Aluminum-Copper-Iron Quasicrystal Thin Films. J. Alloys Compd. 2018, 732, 952–957. [Google Scholar] [CrossRef]
- de Araujo, A.P.M.; Pauly, S.; Batalha, R.L.; Coury, F.G.; Kiminami, C.S.; Uhlenwinkel, V.; Gargarella, P. Additive Manufacturing of a Quasicrystal-Forming Al95Fe2Cr2Ti1 Alloy with Remarkable High-Temperature Strength and Ductility. Addit. Manuf. 2021, 41, 101960. [Google Scholar] [CrossRef]
- Yavas, B.; Li, M.; Hung, C.J.; Hebert, R.J.; Alpay, S.P.; Aindow, M. Transformations in Laser Track Microstructures for a Quasicrystal-Reinforced Al-Cu-Fe-Cr Alloy. Mater. Charact. 2024, 217, 114345. [Google Scholar] [CrossRef]
- Galano, M.; Audebert, F.; Stone, I.C.; Cantor, B. Nanoquasicrystalline Al–Fe–Cr-Based Alloys. Part I: Phase Transformations. Acta Mater. 2009, 57, 5107–5119. [Google Scholar] [CrossRef]
- Zięba, A.; Stan-Głowińska, K.; Duraczyńska, D.; Marzec, M.; Góral, A.; Czaja, P.; Rogal, Ł.; Lityńska-Dobrzyńska, L. Al-Ni-Co Decagonal Quasicrystal Application as an Energy-Effective Catalyst for Phenylacetylene Hydrogenation. Sustain. Mater. Technol. 2024, 41, e01055. [Google Scholar] [CrossRef]
- Li, R.T.; Wang, Z.Y.; Sun, W.; Hu, H.L.; Khor, K.A.; Wang, Y.; Dong, Z.L. Microstructure and Strengthening Mechanisms in the Al/Al–Cu–Cr–Fe Composites Consolidated Using Spark Plasma Sintering. Mater. Charact. 2019, 157, 109917. [Google Scholar] [CrossRef]
- Shadangi, Y.; Sharma, S.; Shivam, V.; Basu, J.; Chattopadhyay, K.; Majumdar, B.; Mukhopadhyay, N.K. Fabrication of Al–Cu–Fe Quasicrystal Reinforced 6082 Aluminium Matrix Nanocomposites through Mechanical Milling and Spark Plasma Sintering. J. Alloys Compd. 2020, 828, 154258. [Google Scholar] [CrossRef]
- Silveira, A.D.; e Silva, L.P.M.; Oliveira, T.C.D.; Castro, M.M.; Figueiredo, R.B.; Bolfarini, C.; Botta, W.J.; Wolf, W. Al-Matrix Composites Reinforced with Quasicrystals Consolidated at Room Temperature Using HPT. Mater. Lett. 2022, 317, 132107. [Google Scholar] [CrossRef]
- Nicula, R.; Stir, M.; Turquier, F.; Burkel, E. Single-Phase Bulk Al–Cu–Fe Quasicrystals by Field-Assisted Sintering. Mater. Sci. Eng. A 2008, 475, 113–116. [Google Scholar] [CrossRef]
- ASM Handbook. Surface Engineering; ASM International Handbook Committee: Novelty, OH, USA, 1994; Volume 5. [Google Scholar]
- Chen, B.; Shen, J.; Ye, X.; Imai, H.; Umeda, J.; Takahashi, M.; Kondoh, K. Solid-State Interfacial Reaction and Load Transfer Efficiency in Carbon Nanotubes (CNTs)-Reinforced Aluminum Matrix Composites. Carbon N. Y. 2017, 114, 198–208. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhao, K.; Xiao, B.L.; Wang, W.G.; Ma, Z.Y. Fabrication of CNT/Al Composites with Low Damage to CNTs by a Novel Solution-Assisted Wet Mixing Combined with Powder Metallurgy Processing. Mater. Des. 2016, 97, 424–430. [Google Scholar] [CrossRef]
- Simões, S.; Viana, F.; Reis, M.A.L.; Vieira, M.F. Aluminum and Nickel Matrix Composites Reinforced by CNTs: Dispersion/Mixture by Ultrasonication. Metals 2017, 7, 279. [Google Scholar] [CrossRef]
- Guo, B.; Song, M.; Yi, J.; Ni, S.; Shen, T.; Du, Y. Improving the Mechanical Properties of Carbon Nanotubes Reinforced Pure Aluminum Matrix Composites by Achieving Non-Equilibrium Interface. Mater. Des. 2017, 120, 56–65. [Google Scholar] [CrossRef]
- Kek, S.; Mayer, J. X-Ray and Electron Diffraction Investigations on the Stable Decagonal Phase in Co-Ni-Al Alloys. Cryst. Mater. 1993, 205, 235–254. [Google Scholar] [CrossRef]
- Holland-Moritz, D.; Lu, I.-R.; Wilde, G.; Schroers, J.; Grushko, B. Melting Entropy of Al-Based Quasicrystals. J. Non. Cryst. Solids 1999, 250–252, 829–832. [Google Scholar] [CrossRef]
- Kang, S.S.; Dubois, J.M. Compression Testing of Quasicrystalline Materials. Philos. Mag. A 1992, 66, 151–163. [Google Scholar] [CrossRef]
- Rodseth, J.; Rasch, B.; Lund, O.; Thonstad, J. Solubility of Carbon in Aluminium and Its Effect upon the Casting Process. In Light Metals; TMS: Pittsburgh, PA, USA, 2002; pp. 883–888. [Google Scholar]
- Zhang, Y.; Kang, N.; Mansori, M.E.L.; Wang, Q.; Lu, J.; Lin, X. Friction and Dry Sliding Wear of Al–Fe–Cr Quasicrystals with Multi-Reinforcements by Laser Powder Bed Fusion. Wear 2023, 522, 204682. [Google Scholar] [CrossRef]
- Wolf, W.; Koga, G.Y.; Schulz, R.; Savoie, S.; Kiminami, C.S.; Bolfarini, C.; Botta, W.J. Wear and Corrosion Performance of Al-Cu-Fe-(Cr) Quasicrystalline Coatings Produced by HVOF. J. Therm. Spray Technol. 2020, 29, 1195–1207. [Google Scholar] [CrossRef]
- Phillips, B.S.; Zabinski, J.S. Frictional Characteristics of Quasicrystals at High Temperatures. Tribol. Lett. 2003, 15, 57–64. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Parvin, N.; Valefi, Z.; Alishahi, M. Comparative Study on Tribological and Corrosion Protection Properties of Plasma Sprayed Cr2O3-YSZ-SiC Ceramic Coatings. Ceram. Int. 2019, 45, 21108–21119. [Google Scholar] [CrossRef]
- Lee, K.; Chen, E.; Naugle, D.; Liang, H. Corrosive Behavior of Multi-Phased Quasicrystal Alloys. J. Alloys Compd. 2021, 851, 156862. [Google Scholar] [CrossRef]
- Li, R.T.; Murugan, V.K.; Dong, Z.L.; Khor, K.A. Comparative Study on the Corrosion Resistance of Al–Cr–Fe Alloy Containing Quasicrystals and Pure Al. J. Mater. Sci. Technol. 2016, 32, 1054–1058. [Google Scholar] [CrossRef]
- Lou, J.-F.; Cheng, A.-G.; Zhao, P.; Misra, R.D.K.; Feng, H. The Significant Impact of Carbon Nanotubes on the Electrochemical Reactivity of Mg-Bearing Metallic Glasses with High Compressive Strength. Materials 2019, 12, 2989. [Google Scholar] [CrossRef]
- Samuel Ratna Kumar, P.S.; Robinson Smart, D.S.; John Alexis, S. Corrosion Behaviour of Aluminium Metal Matrix Reinforced with Multi-Wall Carbon Nanotube. J. Asian Ceram. Soc. 2017, 5, 71–75. [Google Scholar] [CrossRef]
- Senthil Saravanan, M.S.; Kumaresh Babu, S.P.; Sivaprasad, K. Mechanical Properties and Corrosion Behavior of Carbon Nanotubes Reinforced AA 4032 Nanocomposites. Exp. Tech. 2014, 38, 48–52. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, S.; Novák, P.; Alishahi, M.; Kačenka, Z.; Šittner, P. Trade-Off Between Wear/Corrosion Performance and Mechanical Properties in D-AlNiCo Poly-Quasicrystals Through CNT Addition to the Microstructure. Metals 2024, 14, 1269. https://doi.org/10.3390/met14111269
Hosseini S, Novák P, Alishahi M, Kačenka Z, Šittner P. Trade-Off Between Wear/Corrosion Performance and Mechanical Properties in D-AlNiCo Poly-Quasicrystals Through CNT Addition to the Microstructure. Metals. 2024; 14(11):1269. https://doi.org/10.3390/met14111269
Chicago/Turabian StyleHosseini, Seyedmehdi, Pavel Novák, Mostafa Alishahi, Zdeněk Kačenka, and Petr Šittner. 2024. "Trade-Off Between Wear/Corrosion Performance and Mechanical Properties in D-AlNiCo Poly-Quasicrystals Through CNT Addition to the Microstructure" Metals 14, no. 11: 1269. https://doi.org/10.3390/met14111269
APA StyleHosseini, S., Novák, P., Alishahi, M., Kačenka, Z., & Šittner, P. (2024). Trade-Off Between Wear/Corrosion Performance and Mechanical Properties in D-AlNiCo Poly-Quasicrystals Through CNT Addition to the Microstructure. Metals, 14(11), 1269. https://doi.org/10.3390/met14111269