Performance of the GH4169 Joint Using a Novel Ni-Based Amorphous Brazing Filler Metal
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Typical Microstructure of GH4169 Joint
3.2. Effect of Brazing Temperature on Microstructure of GH4169 Joints
3.3. Effects of Brazing Temperature on Mechanical Properties of GH4169 Joints
4. Conclusions
- (1)
- The typical microstructure of the joint brazed at 1030 °C is composed of four specific zones, respectively, the BM, HAZ, ISZ, and ASZ. The typical microstructure of the joint is GH4169/(Nb, Mo)-rich boride+(Cr, Nb, Mo)-rich boride/γ(Ni)/Ni-rich boride+γ(Ni)/γ(Ni)/(Cr, Nb, Mo)-rich boride+(Nb, Mo)-rich boride/GH4169. Increasing the temperature led to the HAZ widening and the ASZ depleted at 1090 °C and 1120 °C. In addition, borides in the HAZ coarsened at 1090 °C and 1120 °C.
- (2)
- At 1030 °C, the fracture path is in the ASZ. The fracture mode is the quasi-cleavage fracture. At 1060 °C, 1090 °C, and 1120 °C, the fracture behavior mainly happened in the HAZ. The fracture mode of these joints is the hybrid ductile. At 1060 °C, the shear strength of the obtained joint is the highest value (693.78 MPa) due to the volume fraction increase in the Ni-based solid solution. When brazed with parameters 1060 °C/10 min, thanks to the volume fraction increase in the Ni-based solid solution, the shear strength of the joints reached the peak value of 693.78 MPa.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, D.; Shi, K.Q.; Zhu, D.D.; Liang, Y.; Wang, X.; Wei, Z.; Lin, J. Microstructure evolution and mechanical properties of high Nb-TiAl alloy/GH4169 joints brazed using CuTiZrNi amorphous filler alloy. Intermetallics 2021, 139, 107351. [Google Scholar] [CrossRef]
- Satish, G.J.; Gaitonde, V.N.; Kulkarni, V.N. Traditional and non-traditional machining of nickel-based superalloys: A brief review. Mater. Today Proc. 2021, 44, 1448–1454. [Google Scholar] [CrossRef]
- Guilherme, M.V.; Ulrich, T.; Márcio, C.F. A comprehensive literature review on laser powder bed fusion of Inconel superalloys. Addit. Manuf. 2022, 55, 102871. [Google Scholar] [CrossRef]
- Zhu, D.D.; Yan, J.F.; Jin, Y.L.; Dong, D.; Wang, X.; Ma, T. Pressure-induced excellent corrosion resistance of Ti-45Al-8Nb alloy. Mater. Lett. 2024, 355, 135446. [Google Scholar] [CrossRef]
- Zhu, D.D.; Tang, F.H.; Dong, D.; Wang, X.; Ma, T. Phase formation and nanohardness of Ti–48Al–2Cr–2Nb-1.5C alloy by melt spinning: The effect of cooling rates. Vacuum 2024, 222, 112985. [Google Scholar] [CrossRef]
- Tarai, U.K.; Robi, P.S.; Sukhomay, P. Thermal properties of Ni-Cr-Si-B-Fe based interlayer material and its application in TLP bonding of IN 718 superalloy. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 1666–1680. [Google Scholar] [CrossRef]
- Dong, D.; Xu, H.T.; Zhu, D.D.; Wang, G.; He, Q.; Lin, J. Microstructure and mechanical properties of TiC/Ti matrix composites and Ti–48Al–2Cr–2Nb alloy joints brazed with Ti–28Ni eutectic filler alloy. Arch. Civ. Mech. Eng. 2019, 19, 1259–1267. [Google Scholar] [CrossRef]
- Du, J.H.; Lu, X.D.; Deng, Q.; Bi, Z.-n. Progress in the Research and Manufacture of GH4169 Alloy. J. Iron Steel Res. Int. 2015, 22, 657–663. [Google Scholar] [CrossRef]
- Yan, G.X.; Bhowmik, A.; Nagarajan, B.; Song, X.; Tan, S.C.; Tan, N.J. Post-bond heat treatment effects on the wide gap transient liquid phase bonding of Inconel 718 with BNi-2 paste filler metal. Mater. Sci. Eng. A 2019, 766, 138267. [Google Scholar] [CrossRef]
- Ruiz, V.J.; Nathalie, S.S.; Bocher, P.; Hazotte, A. First melting stages during isothermal brazing, of Ni/BNi-2 couples. J. Mater. Process. Technol. 2013, 213, 2074–2080. [Google Scholar] [CrossRef]
- Li, W.W.; Chen, B.; Xiong, Y.; Xiong, X.; Cheng, Y.; Zou, W. Joining of Cf/SiBCN composite with two Ni-based brazing fillers and interfacial reactions. J. Mater. Sci. Technol. 2017, 33, 487–491. [Google Scholar] [CrossRef]
- Lin, Y.; Xiong, J.T.; Du, Y.J.; Ren, J.; Shi, J.; Li, J. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler. J. Mater. Sci. Technol. 2021, 61, 176–185. [Google Scholar] [CrossRef]
- Binesh, B.; Gharehbagh, A.J. Transient liquid phase bonding of IN738LC/MBF-15/IN738LC: Solidification behavior and mechanical properties. J. Mater. Sci. Technol. 2016, 32, 1137–1151. [Google Scholar] [CrossRef]
- Dong, H.G.; Xia, Y.Q.; Xu, X.X.; Naz, G.J.; Hao, X.; Peng, L.; Zhou, J.; Dong, C. Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model. J. Mater. Sci. Technol. 2020, 39, 89–98. [Google Scholar] [CrossRef]
- Zhang, L.L.; Dong, H.G.; Li, P.; Wu, B.; Ma, Y.; Huang, L.; Li, C.; Li, J. Multiscale microstructural consideration of enhanced shear strength in TiAl intermetallic/K4169 alloy composite joints prepared by vacuum brazing with (Ti, Zr)-Ni-based amorphous filler metal. J. Mater. Sci. Technol. 2024, 172, 51–70. [Google Scholar] [CrossRef]
- Xie, C.L.; Deng, K.Y.; Teng, J.F.; Fu, J.; Li, R.; Zhang, T. Microstructural evolution and mechanical properties of Ni-based superalloy joints brazed using a ternary Ni-W-B amorphous brazing filler metal. J. Alloys Compd. 2023, 960, 170663. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Xu, Q.; Hu, Y.; Guo, F.; Zhang, M.; Zhou, X.; Mao, C.; Tong, Y.; Peng, P. Effects of Ce and La elements on interfacial bonding, thermal damage and mechanical performance of brazed diamonds with Ni-Cr filler alloy. Int. J. Refract. Met. Hard Mater. 2021, 98, 105571. [Google Scholar] [CrossRef]
- Jiao, Y.J.; Sheng, G.M.; Zhang, Y.T.; Xu, C.; Yuan, X. Transient liquid phase bonding of Inconel 625 with Mar-M247 superalloy using Ni-Cr-B interlayer: Microstructure and mechanical properties. Mater. Sci. Eng. A 2022, 831, 142204. [Google Scholar] [CrossRef]
- Salmaliyan, M.; Shamanian, M. Formation mechanism of intermetallic components during dissimilar diffusion bonding of IN718/BNi-2/AISI 316 L by TLP process. Heat Mass Transf. 2019, 55, 2083–2093. [Google Scholar] [CrossRef]
- Ali, I.G.; Masoud, K.A.; Reza, E.K.; Mahd, R.; Hamid, R.B.-R.; Kamran, A.; Filippo, B. Effect of bonding temperature and bonding time on microstructure of dissimilar transient liquid phase bonding of GTD111/BNi-2/IN718 system. J. Mater. Res. Technol. 2022, 21, 2178–2190. [Google Scholar] [CrossRef]
- Alireza, D.; Ali, E.P.; Mohammadjavad, M.; Ali, D.; Armin, R.; Hamid, O. Effect of the isothermal solidification completion on the mechanical properties of Inconel 625 transient liquid phase bond by changing bonding temperature. J. Mater. Res. Technol. 2020, 9, 10355–10365. [Google Scholar] [CrossRef]
- Alireza, D.; Ali, S.; Hamid, O.; Masoud, V. Effect of transient liquid phase bonding time on the microstructure, isothermal solidification completion and the mechanical properties during bonding of Inconel 625 superalloy using Cr-Si-B-Ni filler metal. J. Manuf. Process. 2019, 38, 235–243. [Google Scholar] [CrossRef]
- Tan, J.F.; Wan, M.; Han, W.P.; Zhao, R.; Kang, H.; Qu, P.; Liang, S. Investigation of microstruture evolution and strength mechanism of the Cu coated BNi-7 core-shell structure filler metal. Intermetallics 2021, 141, 107438. [Google Scholar] [CrossRef]
- Alexander, A.I.; Milena, A.P.; Pavel, S.D.; Diana, M.B.; Oleg, N.S. Diffusion brazing of stainless steels influence of Ni-B filler alloy composition. Weld. World 2021, 65, 317–328. [Google Scholar] [CrossRef]
- Ottoa, J.L.; Milena, P.; Anke, S.K.; Marina, K.; Alexander, I.; Boris, K.; Frank, W. Effect of phase formation due to holding time of vacuum brazed AISI 304L/NiCrSiB joints on corrosion fatigue properties. J. Mater. Process. Technol. 2020, 9, 10550–10558. [Google Scholar] [CrossRef]
- Ali, N.; Farzadi, A.; Seyyed, E.M. Effect of diffusion brazing time on microstructure, isothermal solidification completion and microhardness distribution during joining of Nicrofer 5520 superalloy using a liquated Ni-Cr-B interlayer. J. Mater. Res. Technol. 2022, 21, 1212–1222. [Google Scholar] [CrossRef]
- Wang, H.C.; Liu, J.Y.; Lei, S.Y.; Yuan, W.; Pei, Y.; Zhang, X.; Li, W. Effects of Ta and Y additions on the high temperature oxidation mechanisms of Ni-10Al alloy at 1100 °C. Vacuum 2023, 213, 112074. [Google Scholar] [CrossRef]
- Yan, M.; He, K.G.; Liang, X.G. Effect of rare earth element yttrium on properties of superalloy K4648. Foundry 2023, 72, 1573–1576. [Google Scholar]
- Deo, L.P.; Oliveira, M.F. Y and Er minor addition effect on glass forming ability of a Ni-Nb-Zr alloy. J. Alloys Compd. 2015, 644, 729–733. [Google Scholar] [CrossRef]
- Penyaz, M.A.; Ivannikov, A.A.; Sevryukov, O.N.; Kalin, B.A. Overview of nickel-based filler metals for brazing of austenitic stainless steels. Non-Ferr. Metals. 2021, 1, 41–56. [Google Scholar] [CrossRef]
- Mohammad, S.D.; Morteza, S.; Mohammad, A.G. The effect of bonding time on the microstructure and mechanical properties of dissimilar transient liquid phase bonding between UNS N08825 alloy and UNS S32750 super duplex stainless steel using the BNi-2 interlayer. J. Manuf. Process. 2021, 64, 464–472. [Google Scholar] [CrossRef]
- Alireza, D.; Ali, D.; Hamid, O. The bonding temperature effect of the diffusion brazing Inconel 625 superalloy on the microstructure changes, corrosion resistance, and mechanical properties. J. Manuf. Process. 2020, 53, 213–222. [Google Scholar] [CrossRef]
- Asadi, J.; Sajjadi, S.A.; Omidvar, H. Creep properties of Ni-based superalloy GTD-111 joints produced by transient liquid phase method using BNi-3 filler. J. Manuf. Process. 2020, 58, 1103–1114. [Google Scholar] [CrossRef]
- Binesh, B. Diffusion brazing of IN718/AISI 316L dissimilar joint: Microstructure evolution and mechanical properties. J. Manuf. Process. 2020, 57, 196–208. [Google Scholar] [CrossRef]
- Danesh, A.; Seyed, A.S.; Reza, B.; Kamyabi-Gol, A. The role of TLP process variables in improvement of microstructure and mechanical properties in TLP joints of GTD-111/Ni-Cr-Fe-B-Si/GTD-111 system. J. Manuf. Process. 2018, 32, 644–655. [Google Scholar] [CrossRef]
Materials | Ni | Cr | Co | Fe | Nb | Mo | Si | Al | Ti | C | B | Y |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GH4169 | Bal. | 17.90 | - | 18.00 | 5.50 | 3.10 | 0.06 | 0.52 | 1.04 | - | - | - |
JNi-5 | Bal. | 8.0 | 5.0 | - | - | - | 4.0 | - | - | - | 3.0 | 0.1 |
Phase | Ni | Cr | Si | Co | Fe | Nb | Mo | Ti | Al | Y | B | Possible Phase |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 77.29 | 8.86 | 1.82 | 5.96 | 1.39 | 2.31 | 0.21 | 0.73 | 1.18 | 0.25 | - | Ni-rich boride+γ(Ni) |
B | 67.17 | 11.90 | 7.75 | 5.04 | 2.64 | 3.38 | 0.02 | 0.71 | 1.08 | 0.31 | - | γ(Ni) |
C | 8.55 | 7.36 | - | 0.33 | 1.12 | 76.48 | 0.27 | 5.55 | 0.34 | - | - | (Nb, Ti)-rich phase |
D | 37.21 | 34.19 | - | 0.51 | 11.82 | 10.83 | 3.81 | 0.95 | 0.65 | - | 0.03 | (Cr, Nb, Mo)-rich boride |
E | 22.93 | 26.24 | - | 1.83 | 13.74 | 19.41 | 11.09 | 2.71 | 1.75 | - | 0.30 | (Nb, Mo)-rich boride |
F | 54.82 | 14.39 | 0.55 | 1.41 | 19.30 | 4.91 | 1.26 | 1.46 | 1.68 | 0.22 | - | (Cr, Fe)-rich substrate |
Point | Ni | Cr | Si | Co | Fe | Nb | Mo | Ti | Al | Y | B | Possible Zone |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 79.05 | 6.45 | 1.28 | 5.77 | 1.61 | 1.66 | 0.42 | 1.33 | 1.34 | 0.06 | 0.31 | ASZ |
2 | 57.04 | 13.56 | 1.63 | 5.24 | 18.29 | 2.00 | 1.09 | 0.35 | 0.45 | 0.07 | 0.29 | HAZ |
3 | 53.89 | 14.75 | 4.07 | 3.91 | 17.49 | 2.41 | 1.47 | 0.95 | 0.76 | 0.00 | 0.29 | HAZ |
4 | 54.66 | 16.67 | 1.97 | 1.36 | 16.18 | 2.06 | 1.73 | 0.88 | 2.54 | 0.25 | 0.26 | HAZ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhu, K.; Huang, D.; Yang, L. Performance of the GH4169 Joint Using a Novel Ni-Based Amorphous Brazing Filler Metal. Metals 2024, 14, 1274. https://doi.org/10.3390/met14111274
Yang X, Zhu K, Huang D, Yang L. Performance of the GH4169 Joint Using a Novel Ni-Based Amorphous Brazing Filler Metal. Metals. 2024; 14(11):1274. https://doi.org/10.3390/met14111274
Chicago/Turabian StyleYang, Xiaohong, Kaitao Zhu, Dan Huang, and Lin Yang. 2024. "Performance of the GH4169 Joint Using a Novel Ni-Based Amorphous Brazing Filler Metal" Metals 14, no. 11: 1274. https://doi.org/10.3390/met14111274
APA StyleYang, X., Zhu, K., Huang, D., & Yang, L. (2024). Performance of the GH4169 Joint Using a Novel Ni-Based Amorphous Brazing Filler Metal. Metals, 14(11), 1274. https://doi.org/10.3390/met14111274