Electron Beam Additive Manufacturing of SS316L with a Stochastic Scan Strategy: Microstructure, Texture Evolution, and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. The EBM® Process
2.2. Microstructural and Mechanical Characterizations
2.3. Numerical Model
3. Results and Discussion
3.1. Microstructural Evolution
3.2. Morphological and Crystallogic Texture Evolution Driven by Thermo-Kinetic Aspects
3.3. Mechanical Properties
4. Conclusions
- (1)
- The understanding of thermokinetic and thermomechanical aspects of the EBM process corroborated the microstructural evolution and texture formation in SS316L, resulting in continuous columnar grains aligned with the <110> direction along the build direction.
- (2)
- The preferred orientations of {110}<001> and {110}<111> formed in the material were mainly driven by the solidification rate kinetics and stress evolution within the melt pool.
- (3)
- The spatial arrangement of the stochastic scan significantly influenced the grain morphology in the build plane, resulting in the formation of triangular-shaped grains within the plane orthogonal to the build direction.
- (4)
- The mechanical behavior of the EBM-fabricated SS316L material, particularly the work-hardening behavior observed at elevated temperatures, makes it suitable for high-temperature applications, offering a balance between strength and ductility.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, S.; Despeisse, M. Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Oros Daraban, A.E.; Negrea, C.S.; Artimon, F.G.P.; Angelescu, D.; Popan, G.; Gheorghe, S.I.; Gheorghe, M. A Deep Look at Metal Additive Manufacturing Recycling and Use Tools for Sustainability Performance. Sustainability 2019, 11, 5494. [Google Scholar] [CrossRef]
- Galati, M.; Calignano, F.; Viccica, M.; Iuliano, L. Additive Manufacturing Redesigning of Metallic Parts for High Precision Machines. Crystals 2020, 10, 161. [Google Scholar] [CrossRef]
- Hegab, H.; Khanna, N.; Monib, N.; Salem, A. Design for Sustainable Additive Manufacturing: A Review. Sustain. Mater. Technol. 2023, 35, e00576. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Liu, Y.; Li, S.; Hao, Y. Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Adv. Eng. Mater. 2018, 20, 1700842. [Google Scholar] [CrossRef]
- Kolamroudi, M.K.; Asmael, M.; Ilkan, M.; Kordani, N. Developments on Electron Beam Melting (EBM) of Ti–6Al–4V: A Review. Trans. Indian Inst. Met. 2021, 74, 783–790. [Google Scholar] [CrossRef]
- Zhang, L.; Zhai, W.; Zhou, W.; Chen, X.; Chen, L.; Han, B.; Cao, L.; Bi, G. Improvement of Mechanical Properties through Inhibition of Oxidation by Adding TiC Particles in Laser Aided Additive Manufacturing of Stainless Steel 316L. Mater. Sci. Eng. A 2022, 853, 143767. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, Y.; Mansour, R.; Dadbakhsh, S.; Rashid, A. Effect of Scanning Strategy on Thermal Stresses and Strains during Electron Beam Melting of Inconel 625: Experiment and Simulation. Materials 2023, 16, 443. [Google Scholar] [CrossRef]
- Carpenter, K.; Tabei, A. On Residual Stress Development, Prevention, and Compensation in Metal Additive Manufacturing. Materials 2020, 13, 255. [Google Scholar] [CrossRef]
- Shih, C.-C.; Shih, C.-M.; Su, Y.-Y.; Su, L.H.J.; Chang, M.-S.; Lin, S.-J. Effect of Surface Oxide Properties on Corrosion Resistance of 316L Stainless Steel for Biomedical Applications. Corros. Sci. 2004, 46, 427–441. [Google Scholar] [CrossRef]
- Desu, R.K.; Nitin Krishnamurthy, H.; Balu, A.; Gupta, A.K.; Singh, S.K. Mechanical Properties of Austenitic Stainless Steel 304L and 316L at Elevated Temperatures. J. Mater. Res. Technol. 2016, 5, 13–20. [Google Scholar] [CrossRef]
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent Developments in Stainless Steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Baddoo, N.R. Stainless Steel in Construction: A Review of Research, Applications, Challenges and Opportunities. J. Constr. Steel Res. 2008, 64, 1199–1206. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, D.; Liang, X.; Li, X.; Lin, F. Multiple Stages of Smoking Phenomenon in Electron Beam Powder Bed Fusion Process. Addit. Manuf. 2023, 66, 103434. [Google Scholar] [CrossRef]
- Cordero, Z.C.; Meyer, H.M.; Nandwana, P.; Dehoff, R.R. Powder Bed Charging during Electron-Beam Additive Manufacturing. Acta Mater 2017, 124, 437–445. [Google Scholar] [CrossRef]
- Ali, H.; Ma, L.; Ghadbeigi, H.; Mumtaz, K. In-Situ Residual Stress Reduction, Martensitic Decomposition and Mechanical Properties Enhancement through High Temperature Powder Bed Pre-Heating of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A 2017, 695, 211–220. [Google Scholar] [CrossRef]
- Wensrich, C.M.; Luzin, V.; Hendriks, J.N.; Pant, P.; Gregg, A.W.T. Residual Stress in Additively Manufactured Inconel Cubes; Selective Laser Melting versus Electron Beam Melting and a Comparison of Modelling Techniques. Mater. Des. 2024, 244, 113108. [Google Scholar] [CrossRef]
- Körner, C. Additive Manufacturing of Metallic Components by Selective Electron Beam Melting—A Review. Int. Mater. Rev. 2016, 61, 361–377. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The Metallurgy and Processing Science of Metal Additive Manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Sames, W.J.; Unocic, K.A.; Dehoff, R.R.; Lolla, T.; Babu, S.S. Thermal Effects on Microstructural Heterogeneity of Inconel 718 Materials Fabricated by Electron Beam Melting. J. Mater. Res. 2014, 29, 1920–1930. [Google Scholar] [CrossRef]
- Xing, L.-L.; Zhang, W.-J.; Zhao, C.-C.; Gao, W.-Q.; Shen, Z.-J.; Liu, W. Influence of Powder Bed Temperature on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated via Laser Powder Bed Fusion. Materials 2021, 14, 2278. [Google Scholar] [CrossRef]
- Shao, M.; Vijayan, S.; Nandwana, P.; Jinschek, J.R. The Effect of Beam Scan Strategies on Microstructural Variations in Ti-6Al-4V Fabricated by Electron Beam Powder Bed Fusion. Mater. Des. 2020, 196, 109165. [Google Scholar] [CrossRef]
- Raghavan, N.; Simunovic, S.; Dehoff, R.; Plotkowski, A.; Turner, J.; Kirka, M.; Babu, S. Localized Melt-Scan Strategy for Site Specific Control of Grain Size and Primary Dendrite Arm Spacing in Electron Beam Additive Manufacturing. Acta Mater. 2017, 140, 375–387. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kirka, M.M.; Dinwiddie, R.B.; Raghavan, N.; Turner, J.; Dehoff, R.R.; Babu, S.S. Role of Scan Strategies on Thermal Gradient and Solidification Rate in Electron Beam Powder Bed Fusion. Addit. Manuf. 2018, 22, 516–527. [Google Scholar] [CrossRef]
- Nandwana, P.; Lee, Y. Influence of Scan Strategy on Porosity and Microstructure of Ti-6Al-4V Fabricated by Electron Beam Powder Bed Fusion. Mater. Today Commun. 2020, 24, 100962. [Google Scholar] [CrossRef]
- Ren, X.; Peng, H.; Li, J.; Liu, H.; Huang, L.; Yi, X. Selective Electron Beam Melting (SEBM) of Pure Tungsten: Metallurgical Defects, Microstructure, Texture and Mechanical Properties. Materials 2022, 15, 1172. [Google Scholar] [CrossRef] [PubMed]
- Scherillo, F.; Manco, E.; Hassanin, A.E.; Franchitti, S.; Pirozzi, C.; Borrelli, R. Chemical Surface Finishing of Electron Beam Melted Ti6Al4V Using HF-HNO3 Solutions. J. Manuf. Process. 2020, 60, 400–409. [Google Scholar] [CrossRef]
- Campbell, J.E.; Zhang, H.; Burley, M.; Gee, M.; Fry, A.T.; Dean, J.; Clyne, T.W. A Critical Appraisal of the Instrumented Indentation Technique and Profilometry-Based Inverse Finite Element Method Indentation Plastometry for Obtaining Stress–Strain Curves. Adv. Eng. Mater. 2021, 23, 2001496. [Google Scholar] [CrossRef]
- Clyne, T.W.; Campbell, J.E.; Burley, M.; Dean, J. Profilometry-Based Inverse Finite Element Method Indentation Plastometry. Adv. Eng. Mater. 2021, 23, 2100437. [Google Scholar] [CrossRef]
- Sharma, S.; Joshi, S.S.; Pantawane, M.V.; Radhakrishnan, M.; Mazumder, S.; Dahotre, N.B. Multiphysics Multi-Scale Computational Framework for Linking Process–Structure–Property Relationships in Metal Additive Manufacturing: A Critical Review. Int. Mater. Rev. 2023, 68, 943–1009. [Google Scholar] [CrossRef]
- Pantawane, M.V.; Sharma, S.; Sharma, A.; Dasari, S.; Banerjee, S.; Banerjee, R.; Dahotre, N.B. Coarsening of Martensite with Multiple Generations of Twins in Laser Additively Manufactured Ti6Al4V. Acta Mater. 2021, 213, 116954. [Google Scholar] [CrossRef]
- Sharma, S.; Krishna, K.V.M.; Joshi, S.S.; Radhakrishnan, M.; Palaniappan, S.; Dussa, S.; Banerjee, R.; Dahotre, N.B. Laser Based Additive Manufacturing of Tungsten: Multi-Scale Thermo-Kinetic and Thermo-Mechanical Computational Model and Experiments. Acta Mater. 2023, 259, 119244. [Google Scholar] [CrossRef]
- Dahotre, N.B.; Pantawane, M.V.; Sharma, S. Laser-Based Additive Manufacturing: Modeling, Simulation, and Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Nain, V.; Engel, T.; Carin, M.; Boisselier, D. Conventional Meso-Scale and Time-Efficient Sub-Track-Scale Thermomechanical Model for Directed Energy Deposition. Materials 2022, 15, 4093. [Google Scholar] [CrossRef]
- Biegler, M.; Graf, B.; Rethmeier, M. In-Situ Distortions in LMD Additive Manufacturing Walls Can Be Measured with Digital Image Correlation and Predicted Using Numerical Simulations. Addit. Manuf. 2018, 20, 101–110. [Google Scholar] [CrossRef]
- Mukherjee, T.; Wei, H.L.; De, A.; DebRoy, T. Heat and Fluid Flow in Additive Manufacturing—Part II: Powder Bed Fusion of Stainless Steel, and Titanium, Nickel and Aluminum Base Alloys. Comput. Mater. Sci. 2018, 150, 369–380. [Google Scholar] [CrossRef]
- Joshi, S.S.; Sharma, S.; Mazumder, S.; Pantawane, M.V.; Dahotre, N.B. Solidification and Microstructure Evolution in Additively Manufactured H13 Steel via Directed Energy Deposition: Integrated Experimental and Computational Approach. J. Manuf. Process. 2021, 68, 852–866. [Google Scholar] [CrossRef]
- Mazumder, S.; Pantawane, M.V.; Patil, S.M.; Radhakrishnan, M.; Sharma, S.; McKinstry, M.; Dahotre, N.B. Thermokinetically Driven Microstructural Evolution in Laser-Based Directed Energy-Deposited CoCrMo Biomedical Alloy. Adv. Eng. Mater. 2022, 24, 2200352. [Google Scholar] [CrossRef]
- Birnbaum, A.J.; Steuben, J.C.; Barrick, E.J.; Iliopoulos, A.P.; Michopoulos, J.G. Intrinsic Strain Aging, Σ3 Boundaries, and Origins of Cellular Substructure in Additively Manufactured 316L. Addit. Manuf. 2019, 29, 100784. [Google Scholar] [CrossRef]
- Inoue, H.; Koseki, T.; Okita, S.; Fuji, M. Solidification and Transformation Behaviour of Austenitic Stainless Steel Weld Metals Solidified as Primary Austenite: Study of Solidification and Subsequent Transformation of Cr-Ni Stainless Steel Weld Metals (1st Report). Weld. Int. 1997, 11, 876–887. [Google Scholar] [CrossRef]
- Kiran, A.; Koukolíková, M.; Vavřík, J.; Urbánek, M.; Džugan, J. Base Plate Preheating Effect on Microstructure of 316L Stainless Steel Single Track Deposition by Directed Energy Deposition. Materials 2021, 14, 5129. [Google Scholar] [CrossRef]
- Hunt, J.D. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic. Mater. Sci. Eng. 1984, 65, 75–83. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J. Epitaxial Growth and Stray Grain Control toward Single-Crystal Metallic Materials by Additive Manufacturing: A Review. Adv. Eng. Mater. 2023, 25, 2201917. [Google Scholar] [CrossRef]
- Prasad, A.; Yuan, L.; Lee, P.; Patel, M.; Qiu, D.; Easton, M.; StJohn, D. Towards Understanding Grain Nucleation under Additive Manufacturing Solidification Conditions. Acta Mater. 2020, 195, 392–403. [Google Scholar] [CrossRef]
- Plotkowski, A.; Ferguson, J.; Stump, B.; Halsey, W.; Paquit, V.; Joslin, C.; Babu, S.S.; Marquez Rossy, A.; Kirka, M.M.; Dehoff, R.R. A Stochastic Scan Strategy for Grain Structure Control in Complex Geometries Using Electron Beam Powder Bed Fusion. Addit. Manuf. 2021, 46, 102092. [Google Scholar] [CrossRef]
- Chattopadhyay, C.; Sangal, S.; Mondal, K. A Relook at the Preferred Growth Direction of the Solid–Liquid Interface during Solidification of Pure Metals. Acta Mater. 2010, 58, 5342–5353. [Google Scholar] [CrossRef]
- Pistor, J.; Körner, C. A Novel Mechanism to Generate Metallic Single Crystals. Sci. Rep. 2021, 11, 24482. [Google Scholar] [CrossRef]
- Fernandez-Zelaia, P.; Kirka, M.M.; Rossy, A.M.; Lee, Y.; Dryepondt, S.N. Nickel-Based Superalloy Single Crystals Fabricated via Electron Beam Melting. Acta Mater. 2021, 216, 117133. [Google Scholar] [CrossRef]
- Zinovieva, O.; Zinoviev, A.; Romanova, V.; Balokhonov, R. Three-Dimensional Analysis of Grain Structure and Texture of Additively Manufactured 316L Austenitic Stainless Steel. Addit. Manuf. 2020, 36, 101521. [Google Scholar] [CrossRef]
- Helmer, H.; Bauereiß, A.; Singer, R.F.; Körner, C. Grain Structure Evolution in Inconel 718 during Selective Electron Beam Melting. Mater. Sci. Eng. A 2016, 668, 180–187. [Google Scholar] [CrossRef]
- Güden, M.; Yavaş, H.; Tanrıkulu, A.A.; Taşdemirci, A.; Akın, B.; Enser, S.; Karakuş, A.; Hamat, B.A. Orientation Dependent Tensile Properties of a Selective-Laser-Melt 316L Stainless Steel. Mater. Sci. Eng. A 2021, 824, 141808. [Google Scholar] [CrossRef]
- Wang, X.; Muñiz-Lerma, J.A.; Attarian Shandiz, M.; Sanchez-Mata, O.; Brochu, M. Crystallographic-Orientation-Dependent Tensile Behaviours of Stainless Steel 316L Fabricated by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2019, 766, 138395. [Google Scholar] [CrossRef]
- Wang, X.; Muñiz-Lerma, J.A.; Sanchez-Mata, O.; Attarian Shandiz, M.; Brodusch, N.; Gauvin, R.; Brochu, M. Characterization of Single Crystalline Austenitic Stainless Steel Thin Struts Processed by Laser Powder Bed Fusion. Scr. Mater. 2019, 163, 51–56. [Google Scholar] [CrossRef]
- Andreau, O.; Koutiri, I.; Peyre, P.; Penot, J.-D.; Saintier, N.; Pessard, E.; De Terris, T.; Dupuy, C.; Baudin, T. Texture Control of 316L Parts by Modulation of the Melt Pool Morphology in Selective Laser Melting. J. Mater. Process. Technol. 2019, 264, 21–31. [Google Scholar] [CrossRef]
- Sumanariu, C.A.; Amza, C.G.; Baciu, F.; Vasile, M.I.; Nicoara, A.I. Comparative Analysis of Mechanical Properties: Conventional vs. Additive Manufacturing for Stainless Steel 316L. Materials 2024, 17, 4808. [Google Scholar] [CrossRef] [PubMed]
- Voisin, T.; Forien, J.-B.; Perron, A.; Aubry, S.; Bertin, N.; Samanta, A.; Baker, A.; Wang, Y.M. New Insights on Cellular Structures Strengthening Mechanisms and Thermal Stability of an Austenitic Stainless Steel Fabricated by Laser Powder-Bed-Fusion. Acta Mater. 2021, 203, 116476. [Google Scholar] [CrossRef]
- Wang, Y.M.; Voisin, T.; McKeown, J.T.; Ye, J.; Calta, N.P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T.; et al. Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility. Nat. Mater. 2018, 17, 63–71. [Google Scholar] [CrossRef]
- Kim, J.-M.; Jin, H.-H.; Kwon, J.; Kang, S.H.; Lee, B.-S. Effects of Cellular Segregation for High Strength and Ductility of Additively Manufactured 304L Stainless Steel. Mater. Charact. 2022, 194, 112364. [Google Scholar] [CrossRef]
- Deng, P.; Yin, H.; Song, M.; Li, D.; Zheng, Y.; Prorok, B.C.; Lou, X. On the Thermal Stability of Dislocation Cellular Structures in Additively Manufactured Austenitic Stainless Steels: Roles of Heavy Element Segregation and Stacking Fault Energy. JOM 2020, 72, 4232–4243. [Google Scholar] [CrossRef]
- Salman, O.O.; Brenne, F.; Niendorf, T.; Eckert, J.; Prashanth, K.G.; He, T.; Scudino, S. Impact of the Scanning Strategy on the Mechanical Behavior of 316L Steel Synthesized by Selective Laser Melting. J. Manuf. Process. 2019, 45, 255–261. [Google Scholar] [CrossRef]
- Ghouse, S.; Babu, S.; Van Arkel, R.J.; Nai, K.; Hooper, P.A.; Jeffers, J.R.T. The Influence of Laser Parameters and Scanning Strategies on the Mechanical Properties of a Stochastic Porous Material. Mater. Des. 2017, 131, 498–508. [Google Scholar] [CrossRef]
Chemical Element (Wt. %) | Cr | Ni | Mo | Mn | Si | C | Fe |
---|---|---|---|---|---|---|---|
Powder | 18 | 13 | 2.1 | 1.5 | 1.0 | <0.03 | Balance |
SS316L Material | 18.25 | 12.06 | 2.55 | 1.05 | 0.85 | <0.03 | Balance |
Numerical Model Parameters | SS 316L |
---|---|
Liquidus temperature () | 1733 K |
Solidus temperature () | 1693 K |
Latent heat of fusion () | 2.72 × 105 J kg−1 |
Absorption factor () | 0.9 |
Spatial adjustment factor () | 2 |
E-beam voltage () | 60 kV |
Density solid phase () | 7950 kg m−3 |
Density liquid phase () | 7380 kg m−3 |
Poisson’s ration () | 0.3 |
Emissivity () | 0.4 |
Convective heat transfer coefficient () | 15 W m−2 K−1 |
E-beam current (I) | 11 mA |
E-beam power () | 660 W |
E-beam interaction time/spot () | 0.25 ms |
Powder bed packing density () | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaithanya Kumar, K.N.; Sharma, S.; Radhakrishnan, M.; Randhavan, R.; Verma, K.K.; Dowden, S.; Hughes, Z.W.; Banerjee, R.; Dahotre, N.B. Electron Beam Additive Manufacturing of SS316L with a Stochastic Scan Strategy: Microstructure, Texture Evolution, and Mechanical Properties. Metals 2024, 14, 1278. https://doi.org/10.3390/met14111278
Chaithanya Kumar KN, Sharma S, Radhakrishnan M, Randhavan R, Verma KK, Dowden S, Hughes ZW, Banerjee R, Dahotre NB. Electron Beam Additive Manufacturing of SS316L with a Stochastic Scan Strategy: Microstructure, Texture Evolution, and Mechanical Properties. Metals. 2024; 14(11):1278. https://doi.org/10.3390/met14111278
Chicago/Turabian StyleChaithanya Kumar, K. N., Shashank Sharma, Madhavan Radhakrishnan, Rohit Randhavan, Krishna Kamlesh Verma, Shelden Dowden, Zane Weldon Hughes, Rajarshi Banerjee, and Narendra B. Dahotre. 2024. "Electron Beam Additive Manufacturing of SS316L with a Stochastic Scan Strategy: Microstructure, Texture Evolution, and Mechanical Properties" Metals 14, no. 11: 1278. https://doi.org/10.3390/met14111278
APA StyleChaithanya Kumar, K. N., Sharma, S., Radhakrishnan, M., Randhavan, R., Verma, K. K., Dowden, S., Hughes, Z. W., Banerjee, R., & Dahotre, N. B. (2024). Electron Beam Additive Manufacturing of SS316L with a Stochastic Scan Strategy: Microstructure, Texture Evolution, and Mechanical Properties. Metals, 14(11), 1278. https://doi.org/10.3390/met14111278