Liquid Metal Leaching for Rare Earth Magnet Recycling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Leaching Time
3.2. Effect of Stirring on Rare Earth Leaching
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 2023 Critical Materials Assessment. U.S. Department of Energy, May 2023. Available online: https://www.energy.gov/sites/default/files/2023-05/2023-critical-materials-assessment.pdf (accessed on 26 October 2023).
- Raspini, J.P.; Bonfante, M.C.; Cúnico, F.R.; Alarcon, O.E.; Campos, L.M.S. Drivers and barriers to a circular economy adoption: A sector perspective on rare earth magnets. J. Mater. Cycles Waste Manag. 2022, 24, 1747–1759. [Google Scholar] [CrossRef]
- Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B. Critical Materials Strategy; US Department of Energy Office of Policy and International Affairs, 2010. Available online: https://www.osti.gov/biblio/1000846 (accessed on 7 November 2024).
- Fujita, Y.; McCall, S.K.; Ginosar, D. Recycling rare earths: Perspectives and recent advances. MRS Bull. 2022, 47, 283–288. [Google Scholar] [CrossRef]
- International Energy Agency. Global EV Outlook 2023: Catching up with Climate Ambitions; OECD: Paris, France, 2023. [Google Scholar] [CrossRef]
- Jahns, T. Getting Rare-Earth Magnets Out of EV Traction Machines. IEEE Electrif. Mag. 2017, 5, 6–18. [Google Scholar] [CrossRef]
- Alonso, E.; Wallington, T.; Sherman, A.; Everson, M.; Field, F.; Roth, R.; Kirchain, R. An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles. SAE Int. J. Mater. Manuf. 2012, 5, 473–477. [Google Scholar] [CrossRef]
- Rasheed, M.Z.; Nam, S.-W.; Cho, J.-Y.; Park, K.-T.; Kim, B.-S.; Kim, T.-S. Review of the Liquid Metal Extraction Process for the Recovery of Nd and Dy from Permanent Magnets. Met. Mater. Trans. B 2021, 52, 1213–1227. [Google Scholar] [CrossRef]
- Ulewicz, R.; Wyslocka, E. Magnets: History, the Current State and the Future; METAL: Brno, Czech Republic, June 2015; Available online: https://www.researchgate.net/publication/304676716 (accessed on 7 November 2024).
- Xu, Y.; Chumbley, L.S.; Laabs, F.C. Liquid metal extraction of Nd from NdFeB magnet scrap. J. Mater. Res. 2000, 15, 2296–2304. [Google Scholar] [CrossRef]
- Sun, M.; Hu, X.; Peng, L.; Fu, P.; Ding, W.; Peng, Y. On the production of Mg-Nd master alloy from NdFeB magnet scraps. J. Mech. Work. Technol. 2015, 218, 57–61. [Google Scholar] [CrossRef]
- European Commission. Directorate General for Internal Market, Industry, Entrepreneurship and SMEs. In Study on the EU’s List of Critical Raw Materials (2020): Final Report; Publications Office: Luxembourg, 2020; Available online: https://data.europa.eu/doi/10.2873/11619 (accessed on 31 January 2023).
- Klemettinen, A. Leaching of Rare Earth Elements from NdFeB Magnets without Mechanical Pretreatment by Sulfuric (H2SO4) and Hydrochloric (HCl) Acids. Minerals 2021, 11, 1374. [Google Scholar] [CrossRef]
- Deshmane, V.G.; Islam, S.Z.; Bhave, R.R. Selective Recovery of Rare Earth Elements from a Wide Range of E-Waste and Process Scalability of Membrane Solvent Extraction. Environ. Sci. Technol. 2020, 54, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.K.; Anitha, M.; Singh, D.; Kain, V. NdFeB magnet recycling: Dysprosium recovery by non-dispersive solvent extraction employing hollow fibre membrane contactor. Sep. Purif. Technol. 2018, 194, 265–271. [Google Scholar] [CrossRef]
- Thompson, V.S.; Gupta, M.; Jin, H.; Vahidi, E.; Yim, M.; Jindra, M.A.; Nguyen, V.; Fujita, Y.; Sutherland, J.W.; Jiao, Y.; et al. Techno-economic and Life Cycle Analysis for Bioleaching Rare-Earth Elements from Waste Materials. ACS Sustain. Chem. Eng. 2017, 6, 1602–1609. [Google Scholar] [CrossRef]
- Brown, R.M.; Mirkouei, A.; Reed, D.; Thompson, V. Current nature-based biological practices for rare earth elements extraction and recovery: Bioleaching and biosorption. Renew. Sustain. Energy Rev. 2022, 173, 113099. [Google Scholar] [CrossRef]
- Zakotnik, M.; Afiuny, P.; Dunn, S.; Tudor, C.O. Magnet Recycling to Create Nd-Fe-B Magnets with Improved or Restored Magnetic Performance. 9,044,834, 2 June 2015. Available online: https://patents.google.com/patent/US9044834B2/en (accessed on 19 March 2020).
- Kimiabeigi, M.; Sheridan, R.S.; Widmer, J.D.; Walton, A.; Farr, M.; Scholes, B.; Harris, I.R. Production and Application of HPMS Recycled Bonded Permanent Magnets for a Traction Motor Application. IEEE Trans. Ind. Electron. 2017, 65, 3795–3804. [Google Scholar] [CrossRef]
- Chinwego, C.A. Metal Leaching and G-METS Distillation for Neodymium Magnet Scrap Recycling. Ph.D. Thesis, Worcester Polytechnic University, Worcester, MA, USA, 2023. [Google Scholar]
- Takeda, O.; Okabe, T.H.; Umetsu, Y. Phase equilibria of the system Fe–Mg–Nd at 1076K. J. Alloys Compd. 2005, 392, 206–213. [Google Scholar] [CrossRef]
- Ellis, T.W.; Schmidt, F.A. Recycling of Rare Earth Metals from Rare Earth-Transition Metal Alloy Scrap by Liquid Metal Extraction. 5,437,709. Available online: https://patents.google.com/patent/US5437709A/en (accessed on 1 August 1995).
- Chinwego, C.; Wagner, H.; Giancola, E.; Jironvil, J.; Powell, A. Technoeconomic Analysis of Rare-Earth Metal Recycling Using Efficient Metal Distillation. JOM 2022, 74, 1296–1305. [Google Scholar] [CrossRef]
- Rutherford, M.; Telgerafchi, A.E.; Espinosa, G.; Powell, A.C.; Dussault, D. Low-Cost Magnesium Primary Production Using Gravity-Driven Multiple Effect Thermal System (G-METS) Distillation. Magnesium 2021; TMS: Orlando, FL, USA, 2021; pp. 139–144. [CrossRef]
- Espinosa, G.; Telgerafchi, A.E.; McArthur, D.; Rutherford, M.; Powell, A.; Dussault, D. Design of Efficient Low-Cost Recycling of Magnesium Using Gravity-Driven Multiple Effect Thermal System (G-METS). In Magnesium Technology 2022; Maier, P., Barela, S., Miller, V.M., Neelameggham, N.R., Eds.; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Germany, 2022; pp. 135–140. [Google Scholar] [CrossRef]
- What Is the Difference Between Neodymium Iron Boron Alloys and Samarium Cobalt Alloys?” Less Common Metals. Available online: https://lesscommonmetals.com/what-is-the-difference-between-neodymium-iron-boron-alloys-and-samarium-cobalt-alloys/ (accessed on 7 November 2024).
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Chae, H.J.; Kim, Y.D.; Kim, B.S.; Kim, J.G.; Kim, T.-S. Experimental investigation of diffusion behavior between molten Mg and Nd–Fe–B magnets. J. Alloys Compd. 2014, 586, S143–S149. [Google Scholar] [CrossRef]
- Ott, R.T.; McCallum, R.W. Recovering rare earth metals from magnet scrap. U.S. Patent 10,323,299, 18 June 2019. Available online: https://patents.google.com/patent/US10323299B2/en (accessed on 17 May 2021).
- Nam, S.-W.; Kim, D.-K.; Kim, B.-S.; Kim, D.-H.; Kim, T.-S. Extraction Mechanism of Rare Earth Elements Contain in Permanent Magnets Using Molten Bismuth. Sci. Adv. Mater. 2017, 9, 1987–1992. [Google Scholar] [CrossRef]
- Na, H.W.; Kim, Y.H.; Son, H.T.; Jung, I.H.; Choi, H.S.; Kim, T.B. Effect of Scrap Size on Extraction of Neodymium from Nd-Fe-B Magnet Scrap by Liquid Metal Extraction. Curr. Nanosci. 2014, 10, 128–130. [Google Scholar] [CrossRef]
- Okabe, T.H.; Takeda, O.; Fukuda, K.; Umetsu, Y. Direct Extraction and Recovery of Neodymium Metal from Magnet Scrap. Mater. Trans. 2003, 44, 798–801. [Google Scholar] [CrossRef]
- Opoku, E.O.; Khan, H.; Chinwego, C.; Powell, A. Rare Earth Magnet Recycling Via Liquid Magnesium Leaching and Distillation. In Rare Metal Technology 2024; Forsberg, K., Ouchi, T., Azimi, G., Alam, S., Neelameggham, N.R., Baba, A.A., Peng, H., Karamalidis, A., Eds.; The Minerals, Metals & Materials Series; Springer Nature: Cham, Switzerland, 2024; pp. 63–70. [Google Scholar] [CrossRef]
Mg (wt.%) | Fe (wt.%) | Nd (wt.%) | Pr (wt.%) | Dy (wt.%) | Ni (wt.%) | Cu (wt.%) | |
---|---|---|---|---|---|---|---|
Top | 99 | 0.01 | 0.33 | 0.12 | 0 | 0.26 | 0.06 |
Middle | 97 | 0.03 | 2.3 | 0.73 | 0.01 | 0.42 | 0.15 |
Bottom | 90 | 0.07 | 7 | 2.12 | 0.03 | 0.6 | 0.27 |
Mg (wt.%) | Fe (wt.%) | Nd (wt.%) | Pr (wt.%) | Dy (wt.%) | Ni (wt.%) | Cu (wt.%) | |
---|---|---|---|---|---|---|---|
Top | 99.8 | 0.01 | 0.1 | 0.02 | 0 | 0.03 | 0.02 |
Middle | 98.16 | 0.02 | 1.6 | 0.12 | 0 | 0.06 | 0.05 |
Bottom | 90.25 | 0.02 | 7.25 | 2.3 | 0.02 | 0.1 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opoku, E.; Chinwego, C.; Powell, A.; Mishra, B. Liquid Metal Leaching for Rare Earth Magnet Recycling. Metals 2024, 14, 1299. https://doi.org/10.3390/met14111299
Opoku E, Chinwego C, Powell A, Mishra B. Liquid Metal Leaching for Rare Earth Magnet Recycling. Metals. 2024; 14(11):1299. https://doi.org/10.3390/met14111299
Chicago/Turabian StyleOpoku, Emmanuel, Chinenye Chinwego, Adam Powell, and Brajendra Mishra. 2024. "Liquid Metal Leaching for Rare Earth Magnet Recycling" Metals 14, no. 11: 1299. https://doi.org/10.3390/met14111299
APA StyleOpoku, E., Chinwego, C., Powell, A., & Mishra, B. (2024). Liquid Metal Leaching for Rare Earth Magnet Recycling. Metals, 14(11), 1299. https://doi.org/10.3390/met14111299