Low-Acid Leaching for Preferential Lithium Extraction and Preparation of Lithium Carbonate from Rare Earth Molten Salt Electrolytic Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Process
2.3. Characterization
3. Results and Discussion
3.1. Low-Acid Leaching Process
3.1.1. The Effect of Acid Concentration
3.1.2. The Effect of Liquid-to-Solid Ratio
3.1.3. The Effect of Acid Leaching Temperature
3.1.4. The Effect of Acid Leaching Time
3.2. Analysis of Raw Materials and Leaching Residue
3.3. Exploration of Leaching Kinetics
3.4. Purified and Precipitated Lithium Carbonate
3.5. Economic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dan, L.Y.; Liu, N.; Li, Z.Q.; Li, X.M. Study on diffusion dynamics of O2 in molten CaCl2 for molten salt electrolysis. Rare Metal Mat. Eng. 2021, 50, 2409–2414. [Google Scholar]
- Liang, X.; Chen, S.M.; Hong, K.; Chen, D.Y.; Li, Z.Q.; Lai, Y.B.; Xue, J.B. Solubility of La2O3 in LaF3-LiF fluoride molten salts. J. Rare Earth. 2021, 39, 594–600. [Google Scholar]
- Xi, X.L.; Feng, M.; Zhang, L.W.; Nie, Z.R. Applications of molten salt and progress of molten salt electrolysis secondary metal resource recovery. Int. J. Min. Met. Mater. 2020, 27, 1599–1617. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Luan, Y.K.; Yu, H.M.; Li, D.Z. Research progress in preparation and purification of rare earth metals. Metals 2020, 10, 1376. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Yang, W.; Liu, X.J.; Zhou, X.Y.; Tang, J.J.; Su, F.Y.; Li, Z.X.; Yang, J.; Ma, Y.Y. Mechanism of selective lithium extraction from spent LiFePO4 cathodes in oxidizing alkaline leaching system. Sep. Purif. Technol. 2024, 329, 125237. [Google Scholar] [CrossRef]
- Shi, D.; Cui, B.; Li, L.J.; Peng, X.W.; Zhang, L.C.; Zhang, Y.Z. Lithium extraction from low-grade salt lake brine with ultrahigh Mg/Li ratio using TBP–kerosene–FeCl3 system. Sep. Purif. Technol. 2019, 211, 303–309. [Google Scholar] [CrossRef]
- Mulwanda, J.; Senanayake, G.; Oskierski, H.C.; Altarawneh, M.; Dlugogorski, B.Z. Extraction of lithium from lepidolite by sodium bisulphate roasting, water leaching and precipitation as lithium phosphate from purified leach liquors. Hydrometallurgy 2023, 222, 106139. [Google Scholar] [CrossRef]
- Jing, C.; Tran, T.T.; Lee, M.S. A Review on the Recovery of Lithium and Iron from Spent Lithium Iron Phosphate Batteries. Miner. Process Extr. M. 2024, 1–12. [Google Scholar] [CrossRef]
- Tian, L.; Chen, L.J.; Gong, A.; Wu, X.G.; Cao, C.F.; Xu, Z.F. Recovery of rare earths, lithium and fluorine from rare earth molten salt electrolytic slag via fluoride sulfate conversion and mineral phase reconstruction. Miner. Eng. 2021, 170, 106965. [Google Scholar] [CrossRef]
- Hu, H.Z.; Wang, J.L. Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by nitration. Hydrometallurgy 2021, 200, 105552. [Google Scholar] [CrossRef]
- Yang, Y.M.; Li, L.; Xiao, M.; Niu, F. Transformation mechanism and leaching performance of rare earth fluoride molten salt slag in the process of Na2CO3-roasting. J. Central South Univ. (Sci. Technol.) 2019, 50, 1035–1041. [Google Scholar]
- Tong, Z.F.; Hu, X.F.; Wen, H. Effect of roasting activation of rare earth molten salt slag on extraction of rare earth, lithium and fluorine. J. Rare Earth 2023, 23, 300–308. [Google Scholar] [CrossRef]
- Wu, H.; Yan, H.S.; Liang, Y.Z.; Qiu, S.; Zhou, X.W.; Zhu, D.M.; Qiu, T.S. Rare earth recovery from fluoride molten-salt electrolytic slag by sodium carbonate roasting hydrochloric acid leaching. J. Rare Earth 2023, 41, 1242–1249. [Google Scholar] [CrossRef]
- Wang, J.L.; Hu, H.Z. Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by sulfation. Miner. Eng. 2021, 160, 106711. [Google Scholar] [CrossRef]
- Lai, Y.B.; Li, J.; Zhu, S.T.; Liu, K.J.; Xia, Q.W.; Huang, M.L.; Hu, G.P.; Zhang, H.; Qi, T. Recovery of rare earths, lithium, and fluorine from rare earth molten salt electrolytic slag by mineral phase reconstruction combined with vacuum distillation. Sep. Purif. Technol. 2023, 310, 123105. [Google Scholar] [CrossRef]
- Wu, H.H.; Tao, W.J.; Zheng, Y.C.; Yang, Y.J.; Yu, J.Y.; Cui, J.B.; Lu, Y.; Shi, Z.N.; Wang, Z.W. Novel process for the extraction of lithium carbonate from spent lithium-containing aluminum electrolytes by leaching with aluminum nitrate and nitric acid. Hydrometallurgy 2020, 198, 105505. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W.J.; Liu, H.T. Hydrometallurgical preparation of lithium carbonate from lithium-rich electrolyte. Hydrometallurgy 2019, 85, 88–92. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, X.H.; Shen, Q.F.; Zhao, Q.; Li, Y.G.; Wu, T. A novel approach for ultrasonic assisted organic acid leaching of waste lithium-containing aluminum electrolyte and recovery of lithium. Chem. Eng. Process. 2023, 192, 109508. [Google Scholar] [CrossRef]
- SAC. Methods for Chemical Analysis of Lithium Carbonate, Lithium Hydroxide Monohydrate and Lithium Chloride; Standardization Administration of the People’s Republic of China: Beijing, China, 2013. [Google Scholar]
- Gao, W.F.; Liu, C.M.; Cao, H.B.; Zheng, X.H.; Lin, X.; Wang, H.J.; Zhang, Y.; Sun, Z. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Waste Manag. 2018, 75, 477–485. [Google Scholar] [CrossRef]
- Gao, W.F.; Song, J.L.; Cao, H.B.; Lin, X.; Zhang, X.H.; Zheng, X.H.; Zhang, Y.; Sun, Z. Selective recovery of valuable metals from spent lithium-ion batteries-process development and kinetics evaluation. J. Clean. Prod. 2018, 178, 833–845. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, S.M.; He, Y.H. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag. 2017, 311, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Suarez, D.S.; Pinna, E.G.; Rosales, G.D.; Rodriguez, M.H. Synthesis of lithium fluoride from spent lithium ion batteries. Minerals 2017, 7, 81. [Google Scholar] [CrossRef]
- Yang, Y.X.; Meng, X.Q.; Cao, H.B.; Lin, X.; Liu, C.M.; Sun, Y.; Zhang, Y.; Sun, Z. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process. Green Chem. 2018, 20, 3121. [Google Scholar] [CrossRef]
- Awual, M.R. New type mesoporous conjugate material for selective optical copper (II) ions monitoring & removal from polluted waters. Chem. Eng. J. 2017, 307, 85–94. [Google Scholar]
- Zhou, X.Y.; Yang, W.; Liu, X.J.; Tang, J.J.; Su, F.Y.; Li, Z.X.; Yang, J.; Ma, Y.Y. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system. Waste Manag. 2023, 155, 53–64. [Google Scholar] [CrossRef]
- Chen, X.P.; Ma, H.R.; Luo, C.B.; Zhou, T. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J. Hazard. Mater. 2017, 326, 77–86. [Google Scholar] [CrossRef]
Element | C | Li | Na | Al | Fe | Ca | Si | F | TREO * |
---|---|---|---|---|---|---|---|---|---|
%(w/w) | 9.62 | 1.23 | 16.49 | 1.47 | 6.31 | 2.20 | 5.20 | 16.44 | 26.69 |
Samples | Index | Li | RE | Al | Ca | Fe | Na | Si | F |
---|---|---|---|---|---|---|---|---|---|
Lixivium | Extraction rate (%) | 98.52 | 1.57 | 61.20 | 66.30 | 9.77 | 99.95 | 0.01 | 12.30 |
Ionic concentration (g/L) | 1.21 | 0.42 | 0.90 | 1.46 | 0.62 | 16.68 | 5.2 * | 2.02 | |
Purified solution | Removal or loss ratio (%) | 10.59 | 99.98 | 99.01 | 99.64 | 99.59 | 1.50 | 100 | 98.91 |
Ionic concentration (g/L) | 1.08 | 0.08 * | 8.91 * | 5.25 * | 2.51 * | 16.43 | ND | 22.04 * | |
Concentrated solution | Removal or loss ratio (%) | 10.80 | / | / | / | / | 69.40 | / | / |
Ionic concentration (g/L) | 24.15 | ND | 0.22 | 0.13 | 63* | 127.0 | ND | 0.551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Peng, R.; Xiang, Z.; Liu, F.; Wang, J.; Chen, X. Low-Acid Leaching for Preferential Lithium Extraction and Preparation of Lithium Carbonate from Rare Earth Molten Salt Electrolytic Slag. Metals 2024, 14, 1303. https://doi.org/10.3390/met14111303
Chen Z, Peng R, Xiang Z, Liu F, Wang J, Chen X. Low-Acid Leaching for Preferential Lithium Extraction and Preparation of Lithium Carbonate from Rare Earth Molten Salt Electrolytic Slag. Metals. 2024; 14(11):1303. https://doi.org/10.3390/met14111303
Chicago/Turabian StyleChen, Zaoming, Ruzhen Peng, Zhen Xiang, Fupeng Liu, Jinliang Wang, and Xirong Chen. 2024. "Low-Acid Leaching for Preferential Lithium Extraction and Preparation of Lithium Carbonate from Rare Earth Molten Salt Electrolytic Slag" Metals 14, no. 11: 1303. https://doi.org/10.3390/met14111303
APA StyleChen, Z., Peng, R., Xiang, Z., Liu, F., Wang, J., & Chen, X. (2024). Low-Acid Leaching for Preferential Lithium Extraction and Preparation of Lithium Carbonate from Rare Earth Molten Salt Electrolytic Slag. Metals, 14(11), 1303. https://doi.org/10.3390/met14111303