Extrusion-Based Additive Manufacturing of WC-10Co Cemented Carbide Produced with Bimodal Ultrafine/Micron WC Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Feedstocks
- −
- Tungsten carbide micropowder produced by Kirovgrad hard alloys plant (Kirovograd, Russia) with an average particle size of 6.6 µm (as measured with a Fisher Sub Sieve Sizer), while the total content of carbon was 6.15%, free carbon was 0.03%, and oxygen was 0.013%;
- −
- Ultrafine tungsten carbide powder produced by Xuzhou Jiechuang New Material Technology Co., Ltd. (Guangzhou, China), with an average particle size of 100–200 nm and a purity of 99.9%;
- −
- Cobalt nanopowder produced by Xuzhou Jiechuang New Material Technology Co., Ltd. (Guangzhou, China), with an average particle size of 50 nm and a purity of 99.9%.
2.2. Extrusion-Based Printing and Post-Processing Process
2.3. Research Methods
3. Results and Discussion
3.1. Investigation of Feedstocks and Green Bodies
3.2. Phase and Chemical Composition of Sintered Composites
3.3. Microstructure of Sintered Samples Depending on Content of Ultrafine WC Particles in Powder Composition
3.4. Mechanical Properties
4. Conclusions
- Increasing the content of ultrafine particles in the powder–polymer mixture results in an exponential decrease in the feedstock fluidity indicator. The content of ultrafine WC powder of 15% of total tungsten carbide weight ensures the required rheological properties for 3D printing.
- Changes in the ratio between micron and submicron WC particles in the initial powder affect the microstructure of the sintered composite. Sintered cemented carbide with 15% of ultrafine powder in WC weight features a dual-grain structure with predominant fraction sizes in the ranges of 1.5–2 µm and 4–5 µm. According to literature sources, such a structure improves the mechanical properties of hard alloys. When 45% of ultrafine powder is introduced into the mixture, a high number of fine WC grains promotes inter-grain contact and reduces the free path of the binder phase, which results in a more rigid structure, and the material becomes more brittle. Decreasing the amount of submicron powder allows for the formation of a virtually non-intermittent phase of cobalt binder. This results in improved elastic–plastic properties.
- The best mechanical properties are achieved in a WC-10Co cemented carbide fabricated from the initial powder mixture with optimal composition, where 15% of micron powder had been replaced with submicron powder. The formed microstructure allowed for the achievement of a compressive strength of 2449 MPa at deformation of 6.69%, while the modulus of elasticity was 38.8 GPa. The results indicate a good combination of strength and ductility properties in the developed cemented carbide.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, J.; Collado Ciprés, V.; Blomqvist, A.; Kaplan, B. Cemented Carbide Microstructures: A Review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68. [Google Scholar] [CrossRef]
- Larsen-Basse, J. Effect of Composition, Microstructure, and Service Conditions on the Wear of Cemented Carbides. J. Met. 1983, 35, 35–42. [Google Scholar] [CrossRef]
- Tsuda, K. History of Development of Cemented Carbides and Cermet. SEI Tech. Rev. 2016, 82, 16–20. [Google Scholar]
- Fan, C.; Sun, J.; Zhao, J.; Yun, X. High Entropy Alloy Bonded Cemented Carbides: Composition, Processing, Microstructure, Properties and Applications. Ceram. Int. 2024, 50, 37460–37503. [Google Scholar] [CrossRef]
- Sudarshan, T.S. WC-Co Enjoys Proud History and Bright Future. Met. Powder Rep. 1998, 53, 32–38. [Google Scholar] [CrossRef]
- Upadhyaya, G.S. Materials Science of Cemented Carbides—An Overview. Mater. Des. 2001, 22, 483–489. [Google Scholar] [CrossRef]
- Andrén, H.O. Microstructure Development during Sintering and Heat-Treatment of Cemented Carbides and Cermets. Mater. Chem. Phys. 2001, 67, 209–213. [Google Scholar] [CrossRef]
- Nahak, S.; Dewangan, S.; Chattopadhyaya, S.; Krolczyk, G.; Hloch, S. Discussion on Importance of Tungsten Carbide—Cobalt (WC-Co) Cemented Carbide and Its Critical Characterization for Wear Mechanisms Based on Mining Applications. Arch. Min. Sci. 2018, 63, 229–246. [Google Scholar] [CrossRef]
- Konyashin, I.; Schäfer, F.; Cooper, R.; Ries, B.; Mayer, J.; Weirich, T. Novel Ultra-Coarse Hardmetal Grades with Reinforced Binder for Mining and Construction. Int. J. Refract. Met. Hard Mater. 2005, 23, 225–232. [Google Scholar] [CrossRef]
- Norgren, S.; García, J.; Blomqvist, A.; Yin, L. Trends in the P/M Hard Metal Industry. Int. J. Refract. Met. Hard Mater. 2015, 48, 31–45. [Google Scholar] [CrossRef]
- Kim, C.S.; Massa, T.R.; Rohrer, G.S. Modeling the Relationship between Microstructural Features and the Strength of WC-Co Composites. Int. J. Refract. Met. Hard Mater. 2006, 24, 89–100. [Google Scholar] [CrossRef]
- Sarin, V.K. Comprehensive Hard Materials. Volume 1, Hardmetals; Elsevier: Amsterdam, Netherlands, 2014; 1806p. [Google Scholar]
- Rabouhi, H.; Eyidi, D.; Khelfaoui, Y.; Khireddine, A. Microstructural and Mechanical Characterisation of WC-Co Alloys Elaborated by Liquid Phase Sintering and Hot Isostatic Pressing: Study of WC Crystallites Size Evolution. Can. Metall. Q. 2022, 62, 27–35. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Wang, B.; Yuan, J.; Huang, L.; Yin, Z. Microstructure and Properties of WC-8Co Cemented Carbides Prepared by Multiple Spark Plasma Sintering. Int. J. Appl. Ceram. Technol. 2021, 18, 2010–2019. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, J.; Wang, B.; Wang, Y. Two-Step Spark Plasma Sintering Process of Ultrafine Grained WC-12Co-0.2VC Cemented Carbide. Materials 2019, 12, 2443. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Wang, D.; Nie, L.; Wellmann, D.; Tian, Y. Additive Manufacturing of WC-Co Hardmetals: A Review. Int. J. Adv. Manuf. Technol. 2020, 108, 1653–1673. [Google Scholar] [CrossRef]
- Chen, C.; Huang, B.; Liu, Z.; Li, Y.; Zou, D.; Liu, T.; Chang, Y.; Chen, L. Additive Manufacturing of WC-Co Cemented Carbides: Process, Microstructure, and Mechanical Properties. Addit. Manuf. 2023, 63, 103410. [Google Scholar] [CrossRef]
- Kumar, S. Process Chain Development for Additive Manufacturing of Cemented Carbide. J. Manuf. Process. 2018, 34, 121–130. [Google Scholar] [CrossRef]
- Konyashin, I.; Hinners, H.; Ries, B.; Kirchner, A.; Klöden, B.; Kieback, B.; Nilen, R.W.N.; Sidorenko, D. Additive Manufacturing of WC-13%Co by Selective Electron Beam Melting: Achievements and Challenges. Int. J. Refract. Met. Hard Mater. 2019, 84, 105028. [Google Scholar] [CrossRef]
- Xing, M.; Wang, H.; Zhao, Z.; Lu, H.; Liu, C.; Lin, L.; Wang, M.; Song, X. Additive Manufacturing of Cemented Carbides Inserts with High Mechanical Performance. Mater. Sci. Eng. A 2022, 861, 144350. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, Y.W.; Jang, K.M.; Lee, J.W.; Park, M.S.; Koo, H.Y.; Ha, G.H.; Kang, Y.C. Phase Control of WC–Co Hardmetal Using Additive Manufacturing Technologies. Powder Metall. 2022, 65, 13–21. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, L.; Wang, H.; Zhao, Y.; Yang, X.; Zhang, J.; Chen, Z.; Cao, Y.; Liu, B.; Li, X. Microstructure and Mechanical Properties of WC-12Co Cemented Carbide Fabricated by Laser Powder Bed Fusion on a WC-20Co Cemented Carbide Substrate. J. Mater. Res. Technol. 2024, 30, 9093–9101. [Google Scholar] [CrossRef]
- Bricín, D.; Véle, F.; Jansa, Z.; Špirit, Z.; Kotous, J.; Kubátová, D. The Structure and the Properties of WC-Co Samples Produced by SLM Technology and Carbon-Doped Prior to HIP Processing. Rapid Prototyp. J. 2022, 28, 102–122. [Google Scholar] [CrossRef]
- Chen, C.; Huang, B.; Liu, Z.; Chen, L.; Li, Y.; Zou, D.; Chang, Y.; Cheng, X.; Zhou, R.; Liu, Y. Material Extrusion Additive Manufacturing of WC-9Co Cemented Carbide. Addit. Manuf. 2024, 86, 104203. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, R.; Chen, J.; Xiong, X. Material Extrusion Printing of WC-8%Co Cemented Carbide Based on Partly Water-Soluble Binder and Post-Processing. J. Mater. Res. Technol. 2024, 29, 4394–4405. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.-I.; Kim, Y.D.; Jeong, H.; Ryu, S.-S. Material Extrusion-Based Three-Dimensional Printing of WC–Co Alloy with a Paste Prepared by Powder Coating. Addit. Manuf. 2022, 52, 102679. [Google Scholar] [CrossRef]
- Brookes, K.J.A. 3D-Printing Style Additive Manufacturing for Commercial Hardmetals. Met. Powder Rep. 2015, 70, 137–140. [Google Scholar] [CrossRef]
- Carreño-Morelli, E.; Alveen, P.; Moseley, S.; Rodriguez-Arbaizar, M.; Cardoso, K. Three-Dimensional Printing of Hard Materials. Int. J. Refract. Met. Hard Mater. 2020, 87, 105110. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Z.; Chen, C.; Yang, W. Additive Manufacturing of WC-20Co Components by 3D Gel-Printing. Int. J. Refract. Met. Hard Mater. 2018, 70, 215–223. [Google Scholar] [CrossRef]
- Enneti, R.K.; Prough, K.C.; Wolfe, T.A.; Klein, A.; Studley, N.; Trasorras, J.L. Sintering of WC-12%Co Processed by Binder Jet 3D Printing (BJ3DP) Technology. Int. J. Refract. Met. Hard Mater. 2018, 71, 28–35. [Google Scholar] [CrossRef]
- Lin, D.; Xu, J.; Shan, Z.; Chung, S.T.; Park, S.J. Fabrication of WC-Co Cutting Tool by Powder Injection Molding. Int. J. Precis. Eng. Manuf. 2015, 16, 1435–1439. [Google Scholar] [CrossRef]
- Li, T.; Li, Q.; Fuh, J.Y.H.; Yu, P.C.; Lu, L. Two-Material Powder Injection Molding of Functionally Graded WC-Co Components. Int. J. Refract. Met. Hard Mater. 2009, 27, 95–100. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, R.; Chen, J.; Xiong, X. Additive Manufacturing of Cemented Carbide Using Analogous Powder Injection Molding Feedstock. Int. J. Refract. Met. Hard Mater. 2023, 111, 106095. [Google Scholar] [CrossRef]
- Suwanpreecha, C.; Seensattayawong, P.; Vadhanakovint, V.; Manonukul, A. Influence of Specimen Layout on 17-4PH (AISI 630) Alloys Fabricated by Low-Cost Additive Manufacturing. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2021, 52, 1999–2009. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, S.; Riede, M.; Garratt, E.; Roch, A. A Comprehensive Study on Fused Filament Fabrication of Ti-6Al-4V Structures. Addit. Manuf. 2020, 34, 101256. [Google Scholar] [CrossRef]
- Singh, G.; Missiaen, J.M.; Bouvard, D.; Chaix, J.M. Copper Additive Manufacturing Using MIM Feedstock: Adjustment of Printing, Debinding, and Sintering Parameters for Processing Dense and Defectless Parts. Int. J. Adv. Manuf. Technol. 2021, 115, 449–462. [Google Scholar] [CrossRef]
- Mariani, M.; Goncharov, I.; Mariani, D.; De Gaudenzi, G.P.; Popovich, A.; Lecis, N.; Vedani, M. Mechanical and Microstructural Characterization of WC-Co Consolidated by Binder Jetting Additive Manufacturing. Int. J. Refract. Met. Hard Mater. 2021, 100, 105639. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Wang, H.; Kumar, V. Coarsening, Densification, and Grain Growth during Sintering of Nano-Sized Powders—A Perspective. Int. J. Refract. Met. Hard Mater. 2017, 62, 110–117. [Google Scholar] [CrossRef]
- Wang, X.; Fang, Z.Z.; Sohn, H.Y. Grain Growth during the Early Stage of Sintering of Nanosized WC-Co Powder. Int. J. Refract. Met. Hard Mater. 2008, 26, 232–241. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, Z.; Qin, Y.; Bao, Z.; Luo, L. Ultrafine/Nano WC-Co Cemented Carbide: Overview of Preparation and Key Technologies. J. Mater. Res. Technol. 2023, 27, 5822–5839. [Google Scholar] [CrossRef]
- Lay, S.; Hamar-Thibault, S.; Lackner, A. Location of VC in VC, Cr3C2Codoped WC-Co Cermets by HREM and EELS. Int. J. Refract. Met. Hard Mater. 2002, 20, 61–69. [Google Scholar] [CrossRef]
- Johansson, S.A.E.; Wahnström, G. A Computational Study of Thin Cubic Carbide Films in WC/Co Interfaces. Acta Mater. 2011, 59, 171–181. [Google Scholar] [CrossRef]
- Xu, C.; Ai, X.; Huang, C. Research and Development of Rare-Earth Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2001, 19, 159–168. [Google Scholar] [CrossRef]
- Qin, Y.Q.; Peng, Y.Q.; Tian, Y.; Luo, L.M.; Ma, Y.; Zan, X.; Zhu, X.Y.; Wu, Y.C. Effect of Y2O3 on Microstructure and Mechanical Properties of WC-Co-Cemented Carbides Prepared via Solid-Liquid Doping Method and Spark Plasma Sintering. Mater. Today Commun. 2020, 24, 101096. [Google Scholar] [CrossRef]
- Cao, R.J.; Lin, C.G.; Xie, X.C.; Lin, Z.K. Microstructure and Mechanical Properties of WC–Co-Based Cemented Carbide with Bimodal WC Grain Size Distribution. Rare Met. 2023, 42, 2809–2815. [Google Scholar] [CrossRef]
- Liu, C.; Lin, N.; He, Y.; Wu, C.; Jiang, Y. The Effects of Micron WC Contents on the Microstructure and Mechanical Properties of Ultrafine WC-(Micron WC-Co) Cemented Carbides. J. Alloys Compd. 2014, 594, 76–81. [Google Scholar] [CrossRef]
- Müller, D.; Konyashin, I.; Farag, S.; Ries, B.; Zaitsev, A.A.; Loginov, P.A. WC Coarsening in Cemented Carbides during Sintering. Part I: The Influence of WC Grain Size and Grain Size Distribution. Int. J. Refract. Met. Hard Mater. 2022, 102, 105714. [Google Scholar] [CrossRef]
- Lu, Z.; Du, J.; Sun, Y.; Su, G.; Zhang, C.; Kong, X. Effect of Ultrafine WC Contents on the Microstructures, Mechanical Properties and Wear Resistances of Regenerated Coarse Grained WC-10Co Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2021, 97, 105516. [Google Scholar] [CrossRef]
- Ke, Z.; Zheng, Y.; Zhang, G.; Ding, Q.; Zhang, J.; Wu, H.; Xu, X.; Lu, X.; Zhu, X. Microstructure and Mechanical Properties of Dual-Grain Structured WC-Co Cemented Carbides. Ceram. Int. 2019, 45, 21528–21533. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, J.; Yang, H.; Ruan, J. The Effects of Fine WC Contents and Temperature on the Microstructure and Mechanical Properties of Inhomogeneous WC-(Fine WC-Co) Cemented Carbides. Ceram. Int. 2016, 42, 18100–18107. [Google Scholar] [CrossRef]
- Okubo, K.; Tanaka, S.; Ito, H. The Effects of Metal Particle Size and Distributions on Dimensional Accuracy for Micro Parts in Micro Metal Injection Molding. Microsyst. Technol. 2010, 16, 2037–2041. [Google Scholar] [CrossRef]
- Ferkel, H.; Hellmig, R.J. Effect of Nanopowder Deagglomeration on the Densities of Nanocrystalline Ceramic Green Bodies and Their Sintering Behaviour. Nanostructured Mater. 1999, 11, 617–622. [Google Scholar] [CrossRef]
- Lerner, M.; Pervikov, A.; Glazkova, E.; Rodkevich, N.; Suliz, K.; Kazantsev, S.; Toropkov, N.; Bakina, O. Synthesis of Ti–Al Bimodal Powder for High Flowability Feedstock by Electrical Explosion of Wires. Metals 2022, 12, 478. [Google Scholar] [CrossRef]
- Krinitcyn, M.; Pervikov, A.; Svarovskaya, N.; Lozhkomoev, A.; Lerner, M. Extrusion-Based Additive Manufacturing of the Ti6Al4V Alloy Parts. Coatings 2023, 13, 1067. [Google Scholar] [CrossRef]
- Lerner, M.; Suliz, K.; Pervikov, A.; Tarasov, S. Micron- and Nanosized Alloy Particles Made by Electric Explosion of W/Cu-Zn and W/Cu/Ni-Cr Intertwined Wires for 3D Extrusion Feedstock. Materials 2023, 16, 955. [Google Scholar] [CrossRef]
- Choi, J.P.; Park, J.S.; Hong, E.J.; Lee, W.S.; Lee, J.S. Analysis of the Rheological Behavior of Fe Trimodal Micro-Nano Powder Feedstock in Micro Powder Injection Molding. Powder Technol. 2017, 319, 253–260. [Google Scholar] [CrossRef]
- You, W.K.; Choi, J.P.; Yoon, S.M.; Lee, J.S. Low Temperature Powder Injection Molding of Iron Micro-Nano Powder Mixture. Powder Technol. 2012, 228, 199–205. [Google Scholar] [CrossRef]
- Pervikov, A.; Toropkov, N.; Kazantsev, S.; Bakina, O.V.; Glazkova, E.; Lerner, M. Preparation of Nano/Micro Bimodal Aluminum Powder by Electrical Explosion of Wires. Materials 2021, 14, 6602. [Google Scholar] [CrossRef]
- Krinitcyn, M.; Toropkov, N.; Pervikov, A.; Glazkova, E.; Lerner, M. Characterization of Nano / Micro Bimodal 316L SS Powder Obtained by Electrical Explosion of Wire for Feedstock Application in Powder Injection Molding. Powder Technol. 2021, 394, 225–233. [Google Scholar] [CrossRef]
- Oh, J.W.; Park, J.M.; Shin, D.S.; Noh, J.; Park, S.J. Comparative Study of Nanoparticle Effects on Feedstock Behavior for Injection Molding. Mater. Manuf. Process. 2019, 34, 414–421. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Sun, J.; Wang, W.; Wang, Q. An Investigation of Cobalt Phase Structure in WC-Co Cemented Carbides before and after Deep Cryogenic Treatment. Int. J. Refract. Met. Hard Mater. 2015, 51, 201–206. [Google Scholar] [CrossRef]
- Kumar, S.; Czekanski, A. Optimization of Parameters for SLS of WC-Co. Rapid Prototyp. J. 2017, 23, 1202–1211. [Google Scholar] [CrossRef]
- Ibe, H.; Kato, Y.; Yamada, J.; Kato, M.; Suzuki, A.; Takata, N.; Kobashi, M. Controlling WC/Co Two-Phase Microstructure of Cemented Carbides Additive-Manufactured by Laser Powder Bed Fusion: Effect of Powder Composition and Post Heat-Treatment. Mater. Des. 2021, 210, 110034. [Google Scholar] [CrossRef]
- Ortner, H.M.; Ettmayer, P.; Kolaska, H. The History of the Technological Progress of Hardmetals. Int. J. Refract. Met. Hard Mater. 2014, 44, 148–159. [Google Scholar] [CrossRef]
- Ostwald, W. StudienÜber Die Bildung Und Umwandlung Fester Körper. 1. Abhandlung: Übersättigung Und Überkaltung. Zeitschrift für Phys. Chemie 1897, 22, 289–330. [Google Scholar] [CrossRef]
- Aristizabal, M.; Rodriguez, N.; Ibarreta, F.; Martinez, R.; Sanchez, J.M. Liquid Phase Sintering and Oxidation Resistance of WC-Ni-Co-Cr Cemented Carbides. Int. J. Refract. Met. Hard Mater. 2010, 28, 516–522. [Google Scholar] [CrossRef]
- Krinitcyn, M.; Pervikov, A.; Kochuev, D.; Lerner, M. Powder Injection Molding of Ti-Al-W Nano/Micro Bimodal Powders: Structure, Phase Composition and Oxidation Kinetics. Metals 2022, 12, 1357. [Google Scholar] [CrossRef]
- Okamoto, S.; Nakazono, Y.; Otsuka, K.; Shimoitani, Y.; Takada, J. Mechanical Properties of WC/Co Cemented Carbide with Larger WC Grain Size. Mater. Charact. 2005, 55, 281–287. [Google Scholar] [CrossRef]
- Ettmayer, P. Hardmetals and Cermets. Annu. Rev. Mater. Sci. 1989, 19, 145–164. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Elkady, O.A.; Barakat, W.S.; Mohamed, A.Y.A.; Alsaleh, N.A. The Development of WC-Based Composite Tools for Friction Stir Welding of High-Softening-Temperature Materials. Metals Metals 2021, 11, 285. [Google Scholar] [CrossRef]
- Hongbo, N.; Qisen, Z.; Jianping, Z.; Xiao, W.; Yang, Y. The Preparation, Preparation Mechanism and Properties of Extra Coarse-Grained WC–Co Hardmetals. Met. Powder Rep. 2017, 72, 188–194. [Google Scholar] [CrossRef]
- Mandel, K.; Radajewski, M.; Krüger, L. Strain-Rate Dependence of the Compressive Strength of WC-Co Hard Metals. Mater. Sci. Eng. A 2014, 612, 115–122. [Google Scholar] [CrossRef]
- Mandel, K.; Krüger, L.; Krause, R.; Radajewski, M. The Influence of Stress State on the Compressive Strength of WC-Co with Different Co Contents. Int. J. Refract. Met. Hard Mater. 2014, 47, 124–130. [Google Scholar] [CrossRef]
- Kaytbay, S.; El-Hadek, M. Wear Resistance and Fracture Mechanics of WC-Co Composites. Int. J. Mater. Res. 2014, 105, 557–565. [Google Scholar] [CrossRef]
Composition No. | Content, wt.% | |||
---|---|---|---|---|
WC Micropowder | WC Ultrafine Powder | Co Nanopowder | Y2O3 Powder | |
1 | 90 | 0 | 10 | 0.5 |
2 | 76.5 | 13.5 | 10 | 0.5 |
3 | 63 | 27 | 10 | 0.5 |
4 | 49.5 | 40.5 | 10 | 0.5 |
Parameter | Value |
---|---|
Nozzle material | Stainless steel |
Nozzle diameter | 0.8 mm |
Nozzle heating temperature | 130 °C |
Table heating temperature | 60 °C |
Printing travel speed | 40 mm/s |
Filament feed rate (% from the extrusion multiplier) | 90% |
First-layer height | 0.3 mm |
Subsequent-layer height | 0.2 mm |
Infill density | 98% |
Number of skirts | 3 |
Extrusion multiplier | 1.2 |
Infill pattern | Linear |
Indicator | Feedstock Composition No. * | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Ratio of ultrafine WC particles to total amount of WC, wt.% | 0 | 15 | 30 | 45 |
Ratio of removed binder, wt.% | 91.7 ± 0.5 | 91.8 ± 0.4 | 91.1 ± 0.4 | 90.9 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, M.S.; Promakhov, V.V.; Ivanova, L.Y.; Svarovskaya, N.V.; Kozhukhova, M.I.; Lerner, M.I. Extrusion-Based Additive Manufacturing of WC-10Co Cemented Carbide Produced with Bimodal Ultrafine/Micron WC Particles. Metals 2024, 14, 1308. https://doi.org/10.3390/met14111308
Lebedev MS, Promakhov VV, Ivanova LY, Svarovskaya NV, Kozhukhova MI, Lerner MI. Extrusion-Based Additive Manufacturing of WC-10Co Cemented Carbide Produced with Bimodal Ultrafine/Micron WC Particles. Metals. 2024; 14(11):1308. https://doi.org/10.3390/met14111308
Chicago/Turabian StyleLebedev, Mikhail Sergeevich, Vladimir Vasilevich Promakhov, Lyudmila Yurievna Ivanova, Natalya Valentinovna Svarovskaya, Marina Ivanovna Kozhukhova, and Marat Izralievich Lerner. 2024. "Extrusion-Based Additive Manufacturing of WC-10Co Cemented Carbide Produced with Bimodal Ultrafine/Micron WC Particles" Metals 14, no. 11: 1308. https://doi.org/10.3390/met14111308
APA StyleLebedev, M. S., Promakhov, V. V., Ivanova, L. Y., Svarovskaya, N. V., Kozhukhova, M. I., & Lerner, M. I. (2024). Extrusion-Based Additive Manufacturing of WC-10Co Cemented Carbide Produced with Bimodal Ultrafine/Micron WC Particles. Metals, 14(11), 1308. https://doi.org/10.3390/met14111308