Study of the Solidification Microstructure and Deformation Behaviour of Cu20Fe Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure of As-Cast Cu20Fe Alloy
3.2. Microstructure of As-Cold Rolled Cu20Fe Alloy
3.3. Mechanical Properties
4. Discussion
4.1. Solidification Mechanism of Cu20Fe Alloy
4.2. Cold Rolling Deformation Behaviour of Cu20Fe Alloy
4.3. Mechanism for Strengthening
5. Conclusions
- The Cu20Fe alloy undergoes a liquid–solid transition under natural cooling conditions, forming a dendritic microstructure consisting of multiple Fe particles arranged in an oriented manner without liquid phase separation. It provides a new low-cost method for the industrial preparation of Cu-Fe alloys with high Fe compositions.
- After the cold rolling process, the equiaxed Cu grains and Fe dendrites were extended into ribbon-like structures in the rolling direction, with significant grain refinement, and the orientation of the Cu and Fe grains shifted from the initial disorder to the <111> and <110> directions, respectively.
- The Cu20Fe alloys formed both {112}<111>copper and {110}<112> brass textures after cold rolling.
- The mechanical properties of Cu20Fe alloys were markedly enhanced after cold rolling. The enhancement of mechanical properties is primarily ascribed to grain boundary strengthening and work-hardening effects, with work-hardening playing a significant role in the strengthening mechanism.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, D.W.; Zeng, H.; Xiao, X.P.; Wang, H.; Han, B.J.; Liu, B.X.; Yang, B. Effect of Mg addition on Fe phase morphology, distribution and aging kinetics of Cu-6.5Fe alloy. Mater. Sci. Eng. A 2021, 812, 141064. [Google Scholar] [CrossRef]
- Biselli, C.; Morris, D.G. Microstructure and strength of Cu-Fe in situ composites after very high drawing strains. Acta Mater. 1996, 4, 493–504. [Google Scholar] [CrossRef]
- Koga, N.; Zhang, W.; Tomono, S.; Umezawa, O. Microstructure and low temperature tensile properties in Cu-50 mass%Fe alloy. Mater. Trans. 2021, 62, 57–61. [Google Scholar] [CrossRef]
- Pang, Y.J.; Chao, G.H.; Luan, S.; Gong, T.Y.; Wang, Y.R.; Jiang, Z.H.; Xiao, Z.; Jiang, Y.B.; Li, Z. Microstructure and properties of high strength, high conductivity and magnetic Cu-10Fe-0.4Si alloy. Mater. Sci. Eng. A 2021, 826, 142012. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Kuznetsov, A.V.; Salishchev, G.A.; Khlebova, N.E.; Pantsyrny, V.I. Evolution of microstructure and mechanical properties in Cu-14%Fe alloy during severe cold rolling. Mater. Sci. Eng. A 2013, 564, 264–272. [Google Scholar] [CrossRef]
- Liu, S.C.; Jie, J.C.; Guo, Z.K.; Yin, G.M.; Wang, T.M.; Li, T.J. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions. J. Alloys Compd. 2018, 742, 99–106. [Google Scholar] [CrossRef]
- Wang, C.P.; Liu, X.J.; Ohnuma, I.; Kainuma, R.; Ishida, K. Formation of immiscible alloy powders with egg-type microstructure. Science 2002, 297, 990–993. [Google Scholar] [CrossRef]
- Nakagawa, Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Met. 1958, 6, 704–711. [Google Scholar] [CrossRef]
- Wu, Y.H.; Wang, W.L.; Chang, J.; Wei, B.; Xia, Z.; Wei, B. Evolution kinetics of microgravity facilitated spherical macrosegregation within immiscible alloys. J. Alloys Compd. 2018, 763, 808–814. [Google Scholar] [CrossRef]
- Luo, S.B.; Wang, W.L.; Chang, J. A comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy. Acta Mater. 2014, 69, 355–364. [Google Scholar] [CrossRef]
- Jo, H.R.; Kim, J.T.; Hong, S.H.; Kim, Y.S.; Park, H.J.; Park, W.J.; Park, J.M.; Kim, K.B. Effect of silicon on microstructure and mechanical properties of Cu-Fe alloys. J. Alloys Compd. 2017, 707, 184–188. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, X.B.; Li, Y.D.; Zhou, Y.H.; Lai, R.L.; Li, Y.P.; Lei, Q.; Chiba, A. Influence of minor Ag addition on the microstructure and properties of powder metallurgy Cu-10wt% Fe alloy. J. Alloys Compd. 2022, 904, 163983. [Google Scholar] [CrossRef]
- Jeong, Y.B.; Jo, H.R.; Park, H.J.; Kato, H.; Kim, K.B. Mechanical properties and microstructural change in (Cu–Fe) immiscible metal matrix composite: Effect of Mg on secondary phase separation. J. Mater. Res. Technol. 2020, 9, 15989–15995. [Google Scholar] [CrossRef]
- Dai, X.Q.; Xie, M.; Zhou, S.F.; Wang, C.X.; Gu, M.H.; Yang, J.X.; Li, Z.Y. Formation mechanism and improved properties of Cu95Fe5 homogeneous immiscible composite coating by the combination of mechanical alloying and laser cladding. J. Alloys Compd. 2018, 740, 194–202. [Google Scholar] [CrossRef]
- He, J.; Zhao, J. Behavior of Fe-rich phase during rapid solidification of Cu-Fe hypoperitectic alloy. Mater. Sci. Eng. A 2005, 404, 85–90. [Google Scholar] [CrossRef]
- Abu-Oqail, A.; Wagih, A.; Fathy, A.; Elkady, O.; Kabeel, A.M. Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites. Ceram. Int. 2019, 45, 5866–5875. [Google Scholar] [CrossRef]
- Yue, S.P.; Li, G.L.; Qu, J.P.; Liu, S.C.; Guo, Z.K.; Jie, J.C.; Guo, S.L.; Li, T.J. Investigation on the dual-phase co-deformation behavior and strengthening mechanism in cold-drawn Cu-20Fe alloy. Mater. Sci. Eng. A 2023, 863, 144474. [Google Scholar] [CrossRef]
- He, J.; Zhao, J.Z.; Wang, X.F.; Gao, L.L. Microstructure development in finely atomized droplets of copper-iron alloys. Met. Mater. Trans. A 2005, 36, 2449–2454. [Google Scholar] [CrossRef]
- Lu, X.Y.; Cao, C.D.; Wei, B. Microstructure evolution of undercooled iron–copper hypoperitectic alloys. Mater. Sci. Eng. A 2001, 313, 198–206. [Google Scholar] [CrossRef]
- An, H.; Yang, J.; Zhang, X.B.; Yang, S.P. Rapid dendrite growth in solidification of highly undercooled alloys. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2021, 36, 259–261. [Google Scholar] [CrossRef]
- Liu, R.; Chen, D.; Ou, M.; Liang, Y. The effect of initial grain size on the strength property of copper with gradient microstructure. J. Mater. Res. Technol. 2023, 24, 407–417. [Google Scholar] [CrossRef]
- Guan, B.; Xin, Y.; Huang, X.; Liu, C.; Wu, P.; Liu, Q. The mechanism for an orientation dependence of grain boundary strengthening in pure titanium. Int. J. Plast. 2022, 153, 103276. [Google Scholar] [CrossRef]
- Ding, Y.J.; Wang, X.; Xiao, Z.; Fang, M.; Gong, S.; Qiu, W.T. Effect of cryogenic rolling and intermediate aging on mechanical reinforcement of the Cu-Fe-Nb composites. Mater. Charact. 2024, 207, 113469. [Google Scholar] [CrossRef]
- Zhu, X.F.; Xiao, Z.; An, J.H.; Jiang, H.Y.; Jiang, Y.B.; Li, Z. Microstructure and properties of Cu-Ag alloy prepared by continuously directional solidification. J. Alloys Compd. 2021, 883, 160769. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Lu, J.Y.; Tan, S.; Jiang, F.; Sun, J. Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy. Mater. Sci. Eng. A 2018, 731, 403–412. [Google Scholar] [CrossRef]
- Li, D.; Robinson, M.B.; Rathz, T.J.; Williams, G. Liquidus temperatures and solidification behavior in the copper–niobium system. Acta Mater. 1998, 46, 3849–3855. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Chen, C.G.; Li, P.; Yan, M.J.; Qin, Q.; Yang, F.; Wang, W.W.; Guo, Z.M.; Volinsky, A.A. Microstructure and properties evolution of rolled powder metallurgy Cu-30Fe alloy. J. Alloys Compd. 2022, 909, 164761. [Google Scholar] [CrossRef]
Cast | Cu [wt.%] | Fe [wt.%] |
---|---|---|
Cu20Fe | Balance | 19.97 |
Specimens | Hardness [HV] | Tensile Strength [MPa] | Yield Strength [MPa] | Elongation [%] |
---|---|---|---|---|
Cast | 106.9 ± 10.1 | - | - | - |
Cold rolled | 165.6 ± 8.5 | 620 ± 2.3 | 562 ± 6 | 4.4 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, W.; Huang, S.; Lin, B.; Li, J. Study of the Solidification Microstructure and Deformation Behaviour of Cu20Fe Alloy. Metals 2024, 14, 1313. https://doi.org/10.3390/met14121313
Niu W, Huang S, Lin B, Li J. Study of the Solidification Microstructure and Deformation Behaviour of Cu20Fe Alloy. Metals. 2024; 14(12):1313. https://doi.org/10.3390/met14121313
Chicago/Turabian StyleNiu, Wenyong, Su Huang, Baosen Lin, and Jianping Li. 2024. "Study of the Solidification Microstructure and Deformation Behaviour of Cu20Fe Alloy" Metals 14, no. 12: 1313. https://doi.org/10.3390/met14121313
APA StyleNiu, W., Huang, S., Lin, B., & Li, J. (2024). Study of the Solidification Microstructure and Deformation Behaviour of Cu20Fe Alloy. Metals, 14(12), 1313. https://doi.org/10.3390/met14121313