Effects of Heat Treatment and Deformation on Microstructure and Properties of Cu–Ni–Si Alloy/AA8030 Alloy Composite Wires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Experimental Procedure
2.3. Characterization and Testing
3. Results
3.1. Evolution of the Microstructure and Properties During the Aging Process
3.2. Evolution of the Microstructure and Properties During the Drawing Process
4. Discussion
4.1. Strengthening Mechanism of the Composite Wire During the Aging Process
4.2. Detailed Analysis of Interfacial Layer Evolution During Aging and Deformation
5. Conclusions
- (1)
- After aging at 450 °C for 60 min, the composite wire exhibited relatively high comprehensive properties, with ultimate tensile strength, elongation, and electrical conductivity values of 253 MPa, 11.1%, and 55.3% IACS, respectively. In this state, the AA8030 alloy exhibited recrystallized structures, and the hardness decreased to approximately 40 HV. Moreover, Ni2Si phases with an average size of approximately 7.2 nm were formed within the Cu–Ni–Si alloy, which increased the hardness of the Cu–Ni–Si alloy to 150.3 HV.
- (2)
- After five drawing passes (with a deformation of 75%), the ultimate tensile strength, elongation and electrical conductivity of the composite wire were 422 MPa, 3.3%, and 53.6% IACS, respectively. As the deformation increased, the dislocation density of the AA8030 alloy and Cu–Ni–Si alloy gradually increased, and the dislocation strengthening effect significantly improved.
- (3)
- After aging, the interface layer was composed of a CuAl2 layer, a CuAl layer and a Cu9Al4 layer. The CuAl2 and Cu9Al4 layers grew toward the Al alloy and Cu alloy, respectively, whereas the CuAl layer grew toward both the Al alloy and the Cu alloy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pintore, M.; Mittler, T.; Volk, W.; Starykov, O.; Tonn, B. Experimental investigations on the influence of the thermal conditions during composite casting on the microstructure of Cu-Al bilayer compounds. Int. J. Met. 2018, 12, 79–88. [Google Scholar] [CrossRef]
- Chang, D.; Wang, P.; Zhao, Y. Effects of asymmetry and annealing on interfacial microstructure and mechanical properties of Cu/Al laminated composite fabricated by asymmetrical roll bonding. J. Alloys Compd. 2020, 815, 152453. [Google Scholar] [CrossRef]
- Wang, Y.; Song, R.; Yanagimoto, J.; Li, H. Effect of heat treatment on bonding mechanism and mechanical properties of high strength Cu/Al/Cu clad composite. J. Alloys Compd. 2019, 801, 573–580. [Google Scholar] [CrossRef]
- Mao, Z.; Xie, J.; Wang, A.; Wang, W.Y.; Ma, D.Q.; Liu, P. Effects of annealing temperature on the interfacial microstructure and bonding strength of Cu/Al clad sheets produced by twin-roll casting and rolling. J. Mater. Process. Technol. 2020, 285, 116804. [Google Scholar] [CrossRef]
- Zhang, J.P.; Huang, H.G.; Sun, J.N.; Zhao, R.D.; Feng, M. Interfacial pressure distribution and bonding characteristics in twin-roll casting of Cu/Al clad strip. Trans. Nonferrous Met. Soc. China 2022, 32, 2965–2978. [Google Scholar] [CrossRef]
- Bakke, A.O.; Arnberg, L.; Li, Y. Achieving high-strength metallurgical bonding between A356 aluminum and copper through compound casting. Mater. Sci. Eng. A 2021, 810, 140979. [Google Scholar] [CrossRef]
- Wan, T.; Li, S.; Ren, Z.; Han, J.C.; Huang, Q.X. A novel approach for preparing Cu/Al laminated composite based on corrugated roll. Mater. Lett. 2019, 234, 79–82. [Google Scholar]
- Shan, Y.Q.; Zhang, C.M.; Zhang, Y.M.; Feng, J.; Zhao, S.H.; Huang, B.H.; Song, K.X.; Zhou, Y.J. Influence of different rolling passes and deformation amounts on the microstructure evolution and strengthening mechanism of Cu-Ni-Si alloy. J. Mater. Res. Technol. 2024, 33, 3205–3220. [Google Scholar] [CrossRef]
- Shan, Y.Q.; Zhang, Y.M.; Zhang, C.M.; Feng, J.; Huang, B.H.; Zhao, S.H.; Song, K.X. Study on the microstructure and mechanism of stress relaxation behavior of Cu–Ni–Si alloy by two-stage rolling deformation. Mater. Sci. Eng. A 2024, 908, 146946. [Google Scholar] [CrossRef]
- Lu, L.; Ding, Z.M.; Zhang, M.X.; Song, H.W.; Deng, S.Y.; Zhang, S.H. Effect of continuous extrusion forming on mechanical properties of aged Cu-Ni-Si alloy. Mater. Today Commun. 2024, 39, 108858. [Google Scholar] [CrossRef]
- Lei, Q.; Xiao, Z.; Hu, W.; Derby, B.; Li, Z. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Mater. Sci. Eng. A 2017, 697, 37–47. [Google Scholar] [CrossRef]
- Pan, L.; Liu, K.; Breton, F. Effect of Fe on Microstructure and Properties of 8xxx Aluminum Conductor Alloys. J. Mater. Eng. Perform. 2016, 25, 5201–5208. [Google Scholar] [CrossRef]
- Chen, P.; Fan, X.; Yang, Q.; Zhang, Z.; Jia, Z.; Liu, Q. Creep behavior and microstructural evolution of 8030 aluminum alloys compressed at intermediate temperature. J. Mater. Res. Technol. 2021, 12, 1755–1761. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Y.; Yi, D.; Wang, H.S.; Deng, X.B. Low-temperature creep behavior and microstructural evolution of 8030 aluminum cables. Mater. Charact. 2017, 130, 181–187. [Google Scholar] [CrossRef]
- Guo, Y.; Yi, D.; Liu, H.; Wang, B.; Jiang, B.; Wang, H.S. Mechanical properties and conductivity of graphene/Al-8030 composites with directional distribution of graphene. J. Mater. Sci. 2020, 55, 3314–3328. [Google Scholar] [CrossRef]
- Tian, S.K.; Zhao, F.; Liu, X.H. Evolution of microstructure and properties in Cu-Ni-Si alloy clad AA8030 alloy composites prepared by continuous casting composite technology with gradient-varying drawing speeds. Mater. Today Commun. 2024, 40, 109802. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Yang, Y. Relationship and mechanism between double cold rolling-aging process, microstructure and properties of Cu-Ni-Si alloy prepared by two-phase zone continuous casting. Mater. Sci. Eng. A 2020, 797, 140148. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Liu, Q. High strength and high electrical conductivity C70250 copper alloy with fibrous structure reinforced by high density, multi-scale nano-precipitates and dislocation. Mater. Sci. Eng. A 2022, 846, 143283. [Google Scholar] [CrossRef]
- Liu, W.C.; Morris, J.G. Evolution of recrystallization and recrystallization texture in continuous-cast AA3015 aluminum alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2005, 36, 2829–2848. [Google Scholar] [CrossRef]
- Hug, E.; Bellido, N. Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires. Mater. Sci. Eng. A 2011, 528, 7103–7106. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Z.Y.; He, G.Y.; Ou, L.N. Dislocation ordering and texture strengthening of naturally aged Al-Cu-Mg alloy. J. Mater. Sci. Technol. 2022, 118, 1–14. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, C.; Fu, H.; Shen, J.; Zhang, Z.; Xie, J. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy. J. Mater. Sci. Technol. 2022, 98, 33–43. [Google Scholar] [CrossRef]
- Huang, K.; Engler, O.; Li, Y.J.; Marthinsen, K. Evolution in microstructure and properties during non-isothermal annealing of a cold-rolled Al-Mn-Fe-Si alloy with different microchemistry states. Mater. Sci. Eng. A 2015, 628, 216–229. [Google Scholar] [CrossRef]
- Chen, K.; Yu, H.; Hu, X. Simulation of room-temperature strength of ZA22/Al2O3(F) composites. Acta Metall. Sin. 1997, 33, 437–442. [Google Scholar]
- Mattern, N.; Seyrich, R.; Wilde, L.; Baehtz, C.; Knapp, M.; Acker, J. Phase formation of rapidly quenched Cu–Si alloys. J. Alloys Compd. 2007, 429, 211–215. [Google Scholar] [CrossRef]
- Zhang, N.F.; Hu, Q.D.; Ding, Z.Y.; Lu, W.; Yang, F.; Li, J. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates. J. Mater. Sci. Technol. 2022, 16, 83–93. [Google Scholar] [CrossRef]
- Choudhuri, D.; Banerjee, R.; Srinivasan, S.G. Uniaxial deformation of face-centered-cubic(Ni)-ordered B2(NiAl) bicrystals: Atomistic mechanisms near a kurdjumov-sachs interface. J. Mater. Sci. 2018, 53, 5684–5695. [Google Scholar] [CrossRef]
- Tian, S.; Zhao, F.; Liu, X. Clarification of the solid-state diffusion behavior of a copper alloy/aluminum alloy composite interface assisted by position marking of the second phases. Mater. Charact. 2022, 192, 112173. [Google Scholar] [CrossRef]
Alloy | Cu | Al | Ni | Si | Mg | Fe | Zn |
---|---|---|---|---|---|---|---|
Cu–Ni–Si | Bal. | — | 1.00 ± 0.02 | 0.23 ± 0.02 | — | — | — |
AA8030 | 0.23 ± 0.02 | Bal. | — | 0.04 ± 0.01 | 0.05 ± 0.01 | 1.00 ± 0.01 | 0.02 ± 0.01 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
Al (at.%) | 65.2 | 49.8 | 32.9 | 67.5 | 52.9 | 31.9 |
Cu (at.%) | 34.1 | 50.2 | 67.1 | 32.5 | 47.1 | 68.1 |
Interfacial phase | CuAl2 | CuAl | Cu9Al4 | CuAl2 | CuAl | Cu9Al4 |
Parameter | Description | Value | Units | Ref. |
---|---|---|---|---|
M | Taylor factor | 3.06 | - | [11] |
b | Burgers vector of the Cu matrix | 0.255 | nm | [11,17,18] |
GCu | Shear modulus of the Cu matrix | 46 | GPa | [11] |
dp | Average radius of the precipitates (450 °C/60 min) | 7.2 | nm | This work |
f | Volume fraction of the precipitates | 0.25% | - | This work |
a | Constant | 0.2 | - | [11,17,18] |
Description | Strength | Units | Ref. | |
---|---|---|---|---|
σ0 | Intrinsic lattice stress | 52 | MPa | [11,17,18] |
σp | Precipitation strengthening | 278 | MPa | This work |
σd | Dislocation strengthening | 82 | MPa | This work |
σtotal | Total yield strength | 412 | MPa | This work |
Parameter | Description | Value | Units | Ref. |
---|---|---|---|---|
M | Taylor factor | 3.06 | - | [21,22] |
b | Burgers vector of the Al matrix | 0.286 | nm | [21,22] |
GAl | Shear modulus of the Al matrix | 27.8 | GPa | [21] |
a | Constant | 0.35 | - | [21] |
Ky | Hall–Petch constant | 0.12 | MPa·m1/2 | [22,23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Zhao, F.; Liu, X. Effects of Heat Treatment and Deformation on Microstructure and Properties of Cu–Ni–Si Alloy/AA8030 Alloy Composite Wires. Metals 2024, 14, 1330. https://doi.org/10.3390/met14121330
Tian S, Zhao F, Liu X. Effects of Heat Treatment and Deformation on Microstructure and Properties of Cu–Ni–Si Alloy/AA8030 Alloy Composite Wires. Metals. 2024; 14(12):1330. https://doi.org/10.3390/met14121330
Chicago/Turabian StyleTian, Shuke, Fan Zhao, and Xinhua Liu. 2024. "Effects of Heat Treatment and Deformation on Microstructure and Properties of Cu–Ni–Si Alloy/AA8030 Alloy Composite Wires" Metals 14, no. 12: 1330. https://doi.org/10.3390/met14121330
APA StyleTian, S., Zhao, F., & Liu, X. (2024). Effects of Heat Treatment and Deformation on Microstructure and Properties of Cu–Ni–Si Alloy/AA8030 Alloy Composite Wires. Metals, 14(12), 1330. https://doi.org/10.3390/met14121330