Creep-Fatigue Life Evaluation for Grade 91 Steels with Various Origins and Service Histories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tensile Test Method
2.3. Creep Test Method
2.4. Fatigue and Creep-Fatigue Test Method
3. Results and Discussion
3.1. Tensile Properties
3.2. Creep Properties
3.3. Fatigue and Creep-Fatige Properties
3.4. Variations in Creep, Fatigue, and Creep-Fatigue Lives
4. Evaluation of Creep-Fatigue Failure Lives
4.1. Outline of Creep Damage Evaluation Methods
4.1.1. Time Fraction Approach
4.1.2. Ductility Exhaustion Approach
4.1.3. Modified Ductility Exhaustion Approach
4.1.4. Energy-Based Approach
4.1.5. Hybrid Approach
4.2. Outline of Fatigue Damage Evaluation Method
4.3. Evaluation of Creep-Fatigue Failure Life
4.4. Results of Damage Calculation and Creep-Fatigue Life Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Equation/Approach | a0 | a1 | a2 |
---|---|---|---|
(1A)/Ductility Exhaustion | 6.26 × 10−1 | 7.19 × 10−2 | −8.35 × 103 |
(2A)/Energy-Based | −1.12 | 1.50 × 10−1 | 3.91 × 104 |
(3A)/Hybrid | −1.45 | 1.59 × 10−1 | 4.73 × 104 |
Appendix B
Test Conditions | A | B | C | D | E | F |
---|---|---|---|---|---|---|
625 °C, 120 MPa | 1289.7 | 233.3 | 150.3 | 463.2 | 152.0 | 142.1 |
625 °C, 100 MPa | 9159.1 | 3341.8 | 568.8 | 939.0 | 715.8 | 994.2 |
625 °C, 80 MPa | 38,440.0 | 19,703.0 | 3780.0 | 8642.8 | 2852.6 | 7291.5 |
Test Conditions | A | B | C | D | E | F |
---|---|---|---|---|---|---|
1930 | 2090 | 2750 | 1910 | 2560 | 2070 | |
1010 | 1110 | 547 | 668 | 546 | 1320 |
Test Conditions | A | B | C | D | E | F |
---|---|---|---|---|---|---|
10,700 | 10,200 | 9660 | 7690 | 4770 | 6980 | |
1730 | 1180 | 653 | 569 | 902 | 2660 |
References
- Kimura, K.; Sawada, K.; Kushima, H.; Toda, Y. Microstructural stability and long term creep strength of Grade 91 steel. Mater. Sci. Eng. Energy Syst. 2009, 4, 176–183. [Google Scholar] [CrossRef]
- Kimura, K.; Sawada, K.; Kushima, H.; Toda, Y. Influence of Chemical Composition and Heat Treatment on Long-term Creep Strength of Grade 91 Steel. Procedia Eng. 2013, 55, 2–9. [Google Scholar] [CrossRef]
- Parker, J.; Brett, S. Creep performance of a Grade 91 header. Int. J. Press. Vessel. Pip. 2013, 111–112, 82–88. [Google Scholar] [CrossRef]
- EPRI. The Benefits of Improved Control of Composition of Creep-Strength-Enhanced Ferritic Steel Grade 91; EPRI: Palo Alto, CA, USA, 2014; p. 3002003472. [Google Scholar]
- Sawada, K.; Kushima, H.; Hara, T.; Tabuchi, M.; Kimura, K. Heat-to-heat variation of creep strength and long-term stability of microstructure in Grade 91 steels. Mater. Sci. Eng. A 2014, 597, 164–170. [Google Scholar] [CrossRef]
- Maruyama, K.; Nakamura, J.; Sekido, N.; Yoshimi, K. Causes of heat-to-heat variation of creep strength in Grade 91 steel. Mater. Sci. Eng. A 2017, 696, 104–112. [Google Scholar] [CrossRef]
- Takahashi, Y.; Shigeyama, H.; Siefert, J.; Parker, J. Effect of simulated heat affected zone thermal cycle on the creep deformation and damage response of Grade 91 steel including heat-to-heat variation. In Proceedings of the ASME 2018 Pressure Vessels and Piping Division Conference, Prague, Czech Republic, 15–20 July 2018; p. PVP2018-82105. [Google Scholar]
- Shigeyama, H.; Takahashi, Y.; Siefert, J.; Parker, J. Creep Deformation Analyses for Grade 91 Steels Considering Heat-to-Heat Variation. In Proceedings of the ASME 2018 Pressure Vessels and Piping Division Conference, Prague, Czech Republic, 15–20 July 2018; p. PVP2018-85058. [Google Scholar]
- Takahashi, Y.; Shigeyama, H.; Siefert, J.; Parker, J. A summary of 10 years research on Grade 91 and Grade 92 steel. In Joint EPRI-123HiMAT International Conference on Advances in High-Temperature Materials; Shingledecker, J., Takeyama, M., Eds.; ASM International: Materials Park, OH, USA, 2019; pp. 370–378. [Google Scholar]
- Siefert, J.A. The Influence of the Parent Metal Condition on the Cross-Weld Creep Performance in Grade 91 Steel. Ph.D. Thesis, Loughborough University, Loughborough, UK, July 2019. [Google Scholar]
- Sawada, K.; Sekido, K.; Kimura, K.; Arisue, K.; Honda, M.; Komai, N.; Fukuzawa, N.; Ueno, T.; Shimohata, N.; Nakatomi, H.; et al. Effect of Initial Microstructure on Creep Strength of ASME Grade T91 Steel. ISIJ Int. 2020, 60, 382–391. [Google Scholar] [CrossRef]
- Maruyama, K.; Dewees, D.; Abe, F.; Yoshimi, K. Examinations of equations for creep rupture life with a large creep database on Grade 91 steel. Int. J. Press. Vessel. Pip. 2022, 199, 104738. [Google Scholar] [CrossRef]
- ASME. ASME Boiler and Pressure Vessel Code-Code Cases: Boilers and Pressure Vessels; ASME: New York, NY, USA, 2017. [Google Scholar]
- ASME. ASME Boiler and Pressure Vessel Code Section III–Rules for Construction of Nuclear Facility Components-Division 5-High Temperature Reactors; ASME: New York, NY, USA, 2023. [Google Scholar]
- British Energy. Assessment Procedure R5, Issue 3. Assessment Procedure for the High Temperature Response of Structures; British Energy: London, UK, 2003. [Google Scholar]
- Takahashi, Y. Study on creep-fatigue evaluation procedures for high-chromium steels—Part I: Test results and life prediction based on measured stress relaxation. Int. J. Press. Vessel. Pip. 2008, 85, 406–422. [Google Scholar] [CrossRef]
- Wen, J.F.; Tu, S.T.; Xuan, F.Z.; Zhang, X.W.; Gao, X.L. Effects of Stress Level and Stress State on Creep Ductility: Evaluation of Different Models. J. Mater. Sci. Technol. 2016, 32, 695–704. [Google Scholar] [CrossRef]
- Skelton, R.P. Energy criterion for high temperature low cycle fatigue failure. Mater. Sci. Technol. 1991, 7, 427–440. [Google Scholar] [CrossRef]
- Takahashi, Y.; Dogan, B.; Gandy, D. Systematic evaluation of creep–fatigue life prediction methods for various alloys. J. Press. Vessel. Technol. 2013, 135, 061204. [Google Scholar] [CrossRef]
- Payten, W.M.; Dean, D.W.; Snowden, K.U. A strain energy density method for the prediction of creep–fatigue damage in high temperature components. Mater. Sci. Eng. A 2010, 527, 1920–1925. [Google Scholar] [CrossRef]
- Skelton, R.P. The energy density exhaustion method for assessing the creep–fatigue lives of specimens and components. Mater. High Temp. 2013, 30, 183–201. [Google Scholar] [CrossRef]
- Wang, R.Z.; Zhang, X.C.; Tu, S.T.; Zhu, S.P.; Zhang, C.C. A modified strain energy density exhaustion model for creep–fatigue life prediction. Int. J. Fatigue 2016, 90, 12–22. [Google Scholar] [CrossRef]
- Wang, R.Z.; Zhu, X.M.; Zhang, X.C.; Tu, S.T.; Gong, J.G.; Zhang, C.C. A generalized strain energy density exhaustion model allowing for compressive hold effect. Int. J. Fatigue 2017, 104, 61–71. [Google Scholar] [CrossRef]
- Wang, R.Z.; Zhang, X.C.; Gu, H.H.; Li, K.S.; Wen, J.F.; Miura, H.; Suzuki, K.; Tu, S.T. Oxidation-involved life prediction and damage assessment under generalized creep-fatigue loading conditions based on engineering damage mechanics. J. Mater. Res. Technol. 2023, 23, 114–130. [Google Scholar] [CrossRef]
- Li, K.S.; Wang, J.; Fan, Z.C.; Cheng, L.Y.; Yao, S.L.; Wang, R.Z.; Zhang, X.C.; Tu, S.T. A life prediction method and damage assessment for creep-fatigue combined with high-low cyclic loading. Int. J. Fatigue 2022, 161, 106923. [Google Scholar] [CrossRef]
- Song, K.W.D.; Zhao, L.; Xu, L.; Han, Y. An improved life prediction strategy at elevated temperature based on pure creep and fatigue data: Classical strain controlled and hybrid stress–strain controlled creep-fatigue test. Eng. Fract. Mech. 2023, 289, 109412. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.; Xia, X.; Jiang, Y.; Zhang, X.; Zhao, L.; Roy, A.; Gong, J.; Tu, S. A robust life prediction model for a range of materials under creep-fatigue interaction loading conditions. Int. J. Fatigue 2023, 176, 107904. [Google Scholar] [CrossRef]
- Takahashi, Y.; Parker, J.; Gandy, D. Creep-fatigue interaction in Grade 92 steel and its predictability. In Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, Waikoloa, HI, USA, 22–25 October 2013; Gandy, D., Shingledecker, J., Eds.; ASM International: Materials Park, OH, USA, 2014; pp. 667–678. [Google Scholar]
- Payten, W.M.; Dean, D.; Snowden, K.U. Analysis of creep ductility in a ferritic martensitic steel using a hybrid strain energy technique. Mater. Des. 2012, 33, 491–495. [Google Scholar] [CrossRef]
- EPRI. Review of Fabrication and In-Service Performance of a Grade 91 Header; EPRI: Palo Alto, CA, USA, 2013; p. 3002001831. [Google Scholar]
- Nitsche, A.; Mayr, P.; Allen, D. Damage Assessment of Creep Affected Weldments of a Grade 91 Header Component after Long-term High Temperature Service. Weld. World 2015, 59, 675–682. [Google Scholar] [CrossRef]
- ASME. ASME Boiler and Pressure Vessel Code Section II–Materials-Part A-Ferrous Materials Specifications; ASME: New York, NY, USA, 2019. [Google Scholar]
- Kimura, K.; Yaguchi, M. Re-Evaluation of Long-Term Creep Strength of Base Metal of ASME Grade 91 Type Steel. In Proceedings of the ASME 2016 Pressure Vessels and Piping Conference, British Columbia, VA, Canada, 17–21 July 2016; p. PVP2016-63355. [Google Scholar]
- NIMS. NIMS Creep Data Sheet No. 43A; NIMS: Tsukuba, Japan, 2014.
- Spindler, M.W. The prediction of creep damage in type 347 weld metal. Part I: The determination of material properties from creep and tensile tests. Int. J. Press. Vessel. Pip. 2005, 82, 175–184. [Google Scholar] [CrossRef]
- Takahashi, Y. Modelling of rupture ductility of metallic materials over wide ranges of temperatures and loading conditions, part II: Comparison with strain energy-based approach. Mater. High Temp. 2020, 37, 340–350. [Google Scholar] [CrossRef]
- Takahashi, Y. Modelling of rupture ductility of metallic materials over wide ranges of temperatures and loading conditions, part I: Development of basic model. Mater. High Temp. 2020, 37, 357–369. [Google Scholar] [CrossRef]
Element | A | B | C/D | E | F | ASME SA-335 P91 | |
---|---|---|---|---|---|---|---|
Type 1 | Type 2 | ||||||
C | 0.10 | 0.08 | 0.10 | 0.08 | 0.10 | 0.08~0.12 | |
Mn | 0.44 | 0.45 | 0.41 | 0.41 | 0.40 | 0.30~0.60 | 0.30~0.50 |
P | 0.003 | 0.015 | 0.009 | 0.012 | 0.012 | ≤0.020 | |
S | 0.001 | <0.001 | 0.010 | 0.009 | 0.002 | ≤0.010 | ≤0.005 |
Si | 0.26 | 0.24 | 0.41 | 0.14 | 0.33 | 0.20~0.50 | 0.20~0.40 |
Cr | 8.94 | 8.43 | 8.77 | 8.88 | 8.30 | 8.0~9.5 | |
Mo | 0.91 | 0.87 | 0.94 | 0.93 | 0.94 | 0.85~1.05 | |
W | <0.002 | <0.002 | Not detected | <0.002 | Not detected | - | ≤0.05 |
Ni | 0.04 | 0.11 | 0.12 | 0.14 | 0.19 | ≤0.40 | ≤0.20 |
V | 0.21 | 0.20 | 0.21 | 0.21 | 0.21 | 0.18~0.25 | |
Nb | 0.086 | 0.072 | 0.071 | 0.061 | 0.070 | 0.06~0.10 | |
N | 0.0539 | 0.0429 | 0.0454 | 0.0447 | 0.0424 | 0.03~0.07 | 0.035~0.070 |
Cu | 0.01 | 0.03 | 0.19 | 0.18 | 0.05 | - | ≤0.10 |
Al | 0.013 | 0.010 | 0.040 | 0.034 | 0.020 | ≤0.02 | ≤0.020 |
B | <0.0003 | 0.0003 | <0.0003 | <0.0010 | <0.0003 | - | ≤0.001 |
Ti | 0.002 | 0.009 | <0.002 | 0.002 | <0.002 | ≤0.01 | |
Zr | <0.002 | <0.002 | <0.002 | <0.002 | <0.002 | ≤0.01 | |
As | 0.002 | 0.003 | 0.013 | 0.014 | 0.004 | - | ≤0.010 |
Sn | 0.001 | <0.001 | 0.008 | 0.008 | 0.003 | - | ≤0.010 |
Sb | <0.0001 | <0.0001 | 0.0023 | 0.0019 | 0.0006 | - | ≤0.003 |
N/Al | 4.1 | 4.3 | 1.1 | 1.3 | 2.1 | - | ≥4.0 |
Material | 0.2% Proof Stress (MPa) | Tensile Strength (MPa) | Elongation (%) | Reduction in Area (%) |
---|---|---|---|---|
A | 341 | 345 | 32 | 95 |
B | 304 | 306 | 38 | 96 |
C | 275 | 287 | 32 | 82 |
D | 301 | 315 | 49 | 89 |
E | 270 | 280 | 35 | 83 |
F | 235 | 240 | 41 | 90 |
Test Conditions | Coefficient of Variation | |
---|---|---|
Creep | 625 °C, 120 MPa | 1.015 |
625 °C, 100 MPa | 1.195 | |
625 °C, 80 MPa | 0.926 | |
Fatigue | 600 °C, | 0.145 |
625 °C, | 0.249 | |
Creep-Fatigue | 600 °C, , | 0.344 |
625 °C, , | 0.566 |
Constants | A | B | C | D | E | F |
---|---|---|---|---|---|---|
1.70 | 7.20 × 10−1 | 1.70 × 10−1 | 5.00 × 10−1 | 1.70 × 10−1 | 4.00 × 10−1 | |
3.24 × 10−1 | 3.76 × 10−1 | 3.19 × 10−1 | 4.85 × 10−1 | 3.53 × 10−1 | 4.06 × 10−1 | |
4.61 × 10−1 | 1.06 | 6.22 | 1.25 × 101 | 8.46 | 3.63 × 101 | |
2.66 × 10−2 | 6.14 × 10−2 | 1.70 × 10−1 | 1.82 × 10−1 | 1.85 × 10−1 | 2.15 × 10−1 | |
7.23 × 101 | 6.91 × 101 | 6.54 × 101 | 7.81 × 101 | 6.73 × 101 | 6.23 × 101 | |
6.57 × 10−1 | 2.61 × 10−1 | 4.06 × 10−3 | 3.73 × 10−3 | 3.60 × 10−3 | 3.45 × 10−3 | |
1.21 × 10−1 | 1.48 × 10−1 | 2.56 × 10−1 | 2.73 × 10−1 | 2.58 × 10−1 | 2.83 × 10−1 | |
4.17 × 10−1 | 1.65 × 10−1 | 1.45 × 10−3 | 1.34 × 10−3 | 1.23 × 10−3 | 1.41 × 10−3 | |
1.35 × 10−1 | 1.61 × 10−1 | 2.85 × 10−1 | 3.02 × 10−1 | 2.88 × 10−1 | 3.07 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shigeyama, H.; Takahashi, Y.; Siefert, J.; Parker, J. Creep-Fatigue Life Evaluation for Grade 91 Steels with Various Origins and Service Histories. Metals 2024, 14, 148. https://doi.org/10.3390/met14020148
Shigeyama H, Takahashi Y, Siefert J, Parker J. Creep-Fatigue Life Evaluation for Grade 91 Steels with Various Origins and Service Histories. Metals. 2024; 14(2):148. https://doi.org/10.3390/met14020148
Chicago/Turabian StyleShigeyama, Haruhisa, Yukio Takahashi, John Siefert, and Jonathan Parker. 2024. "Creep-Fatigue Life Evaluation for Grade 91 Steels with Various Origins and Service Histories" Metals 14, no. 2: 148. https://doi.org/10.3390/met14020148
APA StyleShigeyama, H., Takahashi, Y., Siefert, J., & Parker, J. (2024). Creep-Fatigue Life Evaluation for Grade 91 Steels with Various Origins and Service Histories. Metals, 14(2), 148. https://doi.org/10.3390/met14020148