Synthesis of Nickel-Based Nanoparticles by Pulsed Laser Ablation in Liquids: Correlations between Laser Beam Power, Size Distribution and Cavitation Bubble Lifetime
Abstract
:1. Introduction
Authors | Laser | Fluence (J/cm2) | Solvent | Wavelength (nm) | Duration (min) | Rep. Rate (Hz) | Results |
---|---|---|---|---|---|---|---|
Ma et al. [33] | Nd:YAG | 3.2, 10.5, 19.9 | De-Ionized (DI) water | 60 | 10 | NiO NPs | |
Mardis et al. [34] | Nd:YAG | Liquid CO2 | 1064 | 15 | 10 | Ni NPs | |
Safa et al. [35] | Nd:YAG | 0.6, 0.8, 1, 1.2 | Distilled water | 1064 | 10 | NiO NPs | |
Mahfouz et al. [36] | Nd:YAG | Water | 532 | 2–15 | 10 | NiO NPs | |
Khashan et al. [37] | Nd:YAG | DI water | 1064 | 10, 20 | 1 | NiO NPs | |
Lasemi et al. [38] | Nd:YAG | Water, Ethanol, Butanol, Isopropanol | 532 | 20 | Ni/NiO NPs | ||
Musaev et al. [39] | Nitrogen laser | 50 | Distilled water | 337 | 5 | Ni NPs | |
Mostafa et al. [40] | Nd:YAG | Pure water | 1064 | 10 | NiO NPs | ||
Gondal et al. [41] | Nd:YAG | H2O2 | 355 | 30 | 10 | NiO NPs | |
Jung et al. [42] | Nd:YAG | DI water, Methanol, Hexane | 1064 | 20 | 10 | Ni, Ni/NiO NPs | |
Gellini et al. [43] | Nd:YAG | 2.5 | Pure water | 1064 | 20 | 10 | NiO NPs |
Lee et al. [44] | Nd:YAG | Methanol, DI water, Hexane | 1064 | 10 | Ni NPs | ||
Arboleda et al. [45] | Ti:sapphire | 90 | Water, n-heptane | 800 | 9 | 1000 | Ni NPs |
This work | Nd:YAG | 70, 90, 130 | DI water | 1064 | 5 | 100–8000 | Ni/NiO NPs |
2. Synthesis–Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Nanotechnology Initiative. Available online: https://www.nano.gov/ (accessed on 15 January 2024).
- Geoffrion, L.D.; Guisbiers, G. Quantum confinement: Size on the grill! J. Phys. Chem. Solids 2020, 140, 109320. [Google Scholar] [CrossRef]
- Halperin, W.P. Quantum Size effects in Metal Particles. Rev. Mod. Phys. 1986, 58, 533–606. [Google Scholar] [CrossRef]
- Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Zhou, W.; Tsai, M.C.; Zhou, J.G.; Guan, M.Y.; Lin, M.C.; Zhang, B.; Hu, Y.F.; Wang, D.Y.; Yang, J.; et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695. [Google Scholar] [CrossRef]
- Sivagami, M.; Asharani, I.V. Phyto-mediated Ni/NiO NPs and their catalytic applications-a short review. Inorg. Chem. Commun. 2022, 145, 110054. [Google Scholar] [CrossRef]
- Bian, Z.F.; Das, S.; Wai, M.H.; Hongmanorom, P.; Kawi, S. A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane. Chemphyschem 2017, 18, 3117–3134. [Google Scholar] [CrossRef] [PubMed]
- Royal Chemical Society. Available online: https://www.rsc.org/periodic-table/element/28/nickel (accessed on 15 January 2024).
- Royal Chemical Society. Available online: https://www.rsc.org/periodic-table/element/79/gold (accessed on 15 January 2024).
- Royal Chemical Society. Available online: https://www.rsc.org/periodic-table/element/78/platinum (accessed on 15 January 2024).
- Jaji, N.D.; Othman, M.B.H.; Lee, H.L.; Hussin, M.H.; Hui, D. One-pot solvothermal synthesis and characterization of highly stable nickel nanoparticles. Nanotechnol. Rev. 2021, 10, 318–329. [Google Scholar] [CrossRef]
- Heilmann, M.; Kulla, H.; Prinz, C.; Bienert, R.; Reinholz, U.; Buzanich, A.G.; Emmerling, F. Advances in Nickel Nanoparticle Synthesis via Oleylamine Route. Nanomaterials 2020, 10, 713. [Google Scholar] [CrossRef]
- Liu, S.Q.; Mei, J.M.; Zhang, C.; Zhang, J.C.; Shi, R.R. Synthesis and magnetic properties of shuriken-like nickel nanoparticles. J. Mater. Sci. Technol. 2018, 34, 836–841. [Google Scholar] [CrossRef]
- Kim, G.; Na, C.W.; Myung, Y. Facile One-Pot Synthesis of Nickel Nanoparticles by Hydrothermal Method. Materials 2023, 16, 76. [Google Scholar] [CrossRef]
- Woodard, A.; Xu, L.H.; Barragan, A.A.; Nava, G.; Wong, B.M.; Mangolini, L. On the non-thermal plasma synthesis of nickel nanoparticles. Plasma Process. Polym. 2018, 15, e1700104. [Google Scholar] [CrossRef]
- Zahra, S.; Shahid, W.; Amin, C.A.; Kanwal, B. Polyol-mediated synthesis of nickel oxide nanoparticles through aqueous sol-gel route. Bmc Chem. 2022, 16, 105. [Google Scholar] [CrossRef]
- Shin, S.M.; Lee, D.W.; Wang, J.P. Fabrication of Nickel Nanosized Powder from LiNiO2 from Spent Lithium-Ion Battery. Metals 2018, 8, 79. [Google Scholar] [CrossRef]
- Fazio, E.; Gökce, B.; De Giacomo, A.; Meneghetti, M.; Compagnini, G.; Tommasini, M.; Waag, F.; Lucotti, A.; Zanchi, C.G.; Ossi, P.M.; et al. Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. Nanomaterials 2020, 10, 2317. [Google Scholar] [CrossRef]
- Zhang, K.; Ganeev, R.A.; Boltaev, G.S.; Redkin, P.V.; Krishnendu, P.S.; Guo, C.L. Formation, aging and self-assembly of regular nanostructures from laser ablation of indium and zinc in water. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 584, 124016. [Google Scholar] [CrossRef]
- Rahman, A.; Krause, B.; Hoang, T.B.; Guisbiers, G. Tailoring the Optical Properties of Selenium Nanoneedles by Pulsed Laser Ablation in Liquids: Implications for Solar Cells and Photocells. Acs Appl. Nano Mater. 2023, 6, 2258–2265. [Google Scholar] [CrossRef]
- Van Overschelde, O.; Guisbiers, G. Photo-fragmentation of selenium powder by Excimer laser ablation in liquids. Opt. Laser Technol. 2015, 73, 156–161. [Google Scholar] [CrossRef]
- van Overschelde, O.; Guisbiers, G.; Snyders, R. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. Apl Mater. 2013, 1, 042114. [Google Scholar] [CrossRef]
- Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013, 15, 3027–3046. [Google Scholar] [CrossRef]
- Ziefuss, A.; Barcikowski, S.; Zhigilei, L.V. Advances in pulsed laser synthesis of nanoparticles in liquids. Sci. China-Phys. Mech. Astron. 2022, 65, 274201. [Google Scholar] [CrossRef]
- Zhang, D.S.; Goekce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Tanabe-Yamagishi, R.; Ito, Y. Effects of liquid depth on the expansion and collapse of a hemispherical cavitation bubble induced in nanosecond pulsed laser ablation of a solid in liquid. Opt. Lasers Eng. 2020, 126, 105937. [Google Scholar] [CrossRef]
- Long, J.Y.; Eliceiri, M.H.; Ouyang, Y.X.; Zhang, Y.K.; Xie, X.Z.; Grigoropoulos, C.P. Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets. Opt. Lasers Eng. 2021, 137, 106334. [Google Scholar] [CrossRef]
- Letzel, A.; Santoro, M.; Frohleiks, J.; Ziefuss, A.R.; Reich, S.; Plech, A.; Fazio, E.; Neri, F.; Barcikowski, S.; Gokce, B. How the re-irradiation of a single ablation spot affects cavitation bubble dynamics and nanoparticles properties in laser ablation in liquids. Appl. Surf. Sci. 2019, 473, 828–837. [Google Scholar] [CrossRef]
- Peng, H.N.; Zhang, J.M.; He, X.L.; Wang, Y.R. Thermal pseudo-potential lattice Boltzmann method for simulating cavitation bubbles collapse near a rigid boundary. Comput. Fluids 2021, 217, 104817. [Google Scholar] [CrossRef]
- Sasaki, K.; Nakano, T.; Soliman, W.; Takada, N. Effect of Pressurization on the Dynamics of a Cavitation Bubble Induced by Liquid-Phase Laser Ablation. Appl. Phys. Express 2009, 2, 046501. [Google Scholar] [CrossRef]
- Wang, Y.R.; Peng, H.A.; He, X.L.; Zhang, J.M. Cavitation bubbles with a tunable-surface-tension thermal lattice Boltzmann model. Phys. Fluids 2022, 34, 102008. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, J.B.; Zhou, J.Y.; Tan, J.W.; Wang, Z.B.; Gan, W.D. Study of wall wettability effects on cavitation bubble collapse using lattice Boltzmann method. Aip Adv. 2021, 11, 065011. [Google Scholar] [CrossRef]
- Ma, R.; Reddy, D.A.; Kim, T.K. Effects of Laser Energy Density on Size and Morphology of NiO Nanoparticles Prepared by Pulsed Laser Ablation in Liquid. Bull. Korean Chem. Soc. 2015, 36, 5–6. [Google Scholar] [CrossRef]
- Mardis, M.; Takada, N.; Machmudah, S.; Wahyudiono; Sasaki, K.; Kanda, H.; Goto, M. Nickel nanoparticles generated by pulsed laser ablation in liquid CO2. Res. Chem. Intermed. 2016, 42, 4581–4590. [Google Scholar] [CrossRef]
- Safa, M.; Dorranian, D.; Masoudi, A.A.; Matin, L.F. Characterizing nickel oxide nanostructures produced by laser ablation method: Effects of laser fluence. Appl. Phys. A-Mater. Sci. Process. 2019, 125, 687. [Google Scholar] [CrossRef]
- Mahfouz, R.; Aires, F.; Brenier, A.; Jacquier, B.; Bertolini, J.C. Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water. Appl. Surf. Sci. 2008, 254, 5181–5190. [Google Scholar] [CrossRef]
- Khashan, K.S.; Sulaiman, G.M.; Ameer, F.; Napolitano, G. Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles. Pak. J. Pharm. Sci. 2016, 29, 541–546. [Google Scholar] [PubMed]
- Lasemi, N.; Pacher, U.; Rentenberger, C.; Bomatí-Miguel, O.; Kautek, W. Laser-Assisted Synthesis of Colloidal Ni/NiOx Core/Shell Nanoparticles in Water and Alcoholic Solvents. Chemphyschem 2017, 18, 1118–1124. [Google Scholar] [CrossRef]
- Musaev, O.R.; Yan, J.; Dusevich, V.; Wrobel, J.M.; Kruger, M.B. Ni nanoparticles fabricated by laser ablation in water. Appl. Phys. A-Mater. Sci. Process. 2014, 116, 735–739. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Mwafy, E.A. The effect of laser fluence for enhancing the antibacterial activity of NiO nanoparticles by pulsed laser ablation in liquid media. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100382. [Google Scholar] [CrossRef]
- Gondal, M.A.; Saleh, T.A.; Drmosh, Q.A. Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl. Surf. Sci. 2012, 258, 6982–6986. [Google Scholar] [CrossRef]
- Jung, H.J.; Choi, M.Y. Specific Solvent Produces Specific Phase Ni Nanoparticles: A Pulsed Laser Ablation in Solvents. J. Phys. Chem. C 2014, 118, 14647–14654. [Google Scholar] [CrossRef]
- Gellini, C.; Deepak, F.L.; Muniz-Miranda, M.; Caporali, S.; Muniz-Miranda, F.; Pedone, A.; Innocenti, C.; Sangregorio, C. Magneto-Plasmonic Colloidal Nanoparticles Obtained by Laser Ablation of Nickel and Silver Targets in Water. J. Phys. Chem. C 2017, 121, 3597–3606. [Google Scholar] [CrossRef]
- Lee, S.J.; Theerthagiri, J.; Choi, M.Y. Time-resolved dynamics of laser-induced cavitation bubbles during production of Ni nanoparticles via pulsed laser ablation in different solvents and their electrocatalytic activity for determination of toxic nitroaromatics. Chem. Eng. J. 2022, 427, 130970. [Google Scholar] [CrossRef]
- Arboleda, D.M.; Santillan, J.M.J.; Herrera, L.J.M.; van Raap, M.B.F.; Zelis, P.M.; Muraca, D.; Schinca, D.C.; Scaffardi, L.B. Synthesis of Ni Nanoparticles by Femtosecond Laser Ablation in Liquids: Structure and Sizing. J. Phys. Chem. C 2015, 119, 13184–13193. [Google Scholar] [CrossRef]
- Liu, B.; Hu, Z.D.; Che, Y.; Chen, Y.B.; Pan, X.Q. Nanoparticle generation in ultrafast pulsed laser ablation of nickel. Appl. Phys. Lett. 2007, 90, 044103. [Google Scholar] [CrossRef]
- Barcikowski, S.; Plech, A.; Suslick, K.S.; Vogel, A. Materials synthesis in a bubble. Mrs Bull. 2019, 44, 382–391. [Google Scholar] [CrossRef]
- Lam, J.; Amans, D.; Chaput, F.; Diouf, M.; Ledoux, G.; Mary, N.; Masenelli-Varlot, K.; Motto-Ros, V.; Dujardin, C. gamma-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: A plasma analysis. Phys. Chem. Chem. Phys. 2014, 16, 963–973. [Google Scholar] [CrossRef]
- Dittrich, S.; Barcikowski, S.; Gökce, B. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease. Opto-Electron. Adv. 2021, 4, 200072. [Google Scholar] [CrossRef]
- Hesabizadeh, T.; Jebari, N.; Madouri, A.; Hallais, G.; Clark, T.E.; Behura, S.K.; Herth, E.; Guisbiers, G. Electric-Field-Induced Phase Change in Copper Oxide Nanostructures. Acs Omega 2021, 6, 33130–33140. [Google Scholar] [CrossRef]
- Kusper, M.; Guisbiers, G. Synthesis of aluminum oxide nanoparticles by laser ablation in liquids. Mrs Adv. 2018, 3, 3899–3903. [Google Scholar] [CrossRef]
- Geoffrion, L.D.; Hesabizadeh, T.; Medina-Cruz, D.; Kusper, M.; Taylor, P.; Vernet-Crua, A.; Chen, J.J.; Ajo, A.; Webster, T.J.; Guisbiers, G. Naked Selenium Nanoparticles for Antibacterial and Anticancer Treatments. Acs Omega 2020, 5, 2660–2669. [Google Scholar] [CrossRef] [PubMed]
- Holder, C.F.; Schaak, R.E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. Acs Nano 2019, 13, 7359–7365. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Long, J.Y.; Eliceiri, M.; Vangelatos, Z.; Rho, Y.; Wang, L.T.; Su, Z.L.; Xie, X.Z.; Zhang, Y.K.; Grigoropoulos, C.P. Early dynamics of cavitation bubbles generated during ns laser ablation of submerged targets. Opt. Express 2020, 28, 14300–14309. [Google Scholar] [CrossRef] [PubMed]
- Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Plesset, M.S. The Dynamics of Cavitation Bubbles. J. Appl. Mech. 1949, 16, 277–282. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, A.; Guisbiers, G. Synthesis of Nickel-Based Nanoparticles by Pulsed Laser Ablation in Liquids: Correlations between Laser Beam Power, Size Distribution and Cavitation Bubble Lifetime. Metals 2024, 14, 224. https://doi.org/10.3390/met14020224
Rahman A, Guisbiers G. Synthesis of Nickel-Based Nanoparticles by Pulsed Laser Ablation in Liquids: Correlations between Laser Beam Power, Size Distribution and Cavitation Bubble Lifetime. Metals. 2024; 14(2):224. https://doi.org/10.3390/met14020224
Chicago/Turabian StyleRahman, Atikur, and Grégory Guisbiers. 2024. "Synthesis of Nickel-Based Nanoparticles by Pulsed Laser Ablation in Liquids: Correlations between Laser Beam Power, Size Distribution and Cavitation Bubble Lifetime" Metals 14, no. 2: 224. https://doi.org/10.3390/met14020224
APA StyleRahman, A., & Guisbiers, G. (2024). Synthesis of Nickel-Based Nanoparticles by Pulsed Laser Ablation in Liquids: Correlations between Laser Beam Power, Size Distribution and Cavitation Bubble Lifetime. Metals, 14(2), 224. https://doi.org/10.3390/met14020224