Elimination of Low-Angle Grain Boundary Networks in FeCrAl Alloys with the Electron Wind Force at a Low Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure and Grain Boundaries (GBs) Evolution
3.2. Microstructural Analysis through Misorientation Maps
3.3. Microstructural Characterization through X-ray Diffraction (XRD) Analysis
3.4. Texture Evolution and Grain Rotation during Electropulsing
3.5. Evaluation of Mechanical Properties through Nanoindentation Testing
4. Conclusions
- A significant reduction in low-angle grain boundary (LAGB) concentration from 82.4% in the cold-rolled state to 47.5% post-electropulsing, surpassing the initial condition’s 54.8%, thereby illustrating the effectiveness of EWF in microstructural refinement.
- The application of electropulsing led to notable texture changes, with the hcp phase showing more significant texture evolution than the bcc phase, indicating a pronounced impact on microstructural orientation.
- XRD analysis confirmed improvements in the FWHM for peaks A and C post-electropulsing, signifying a decrease in defect density and residual stress, whereas the less pronounced recovery for peak B suggests that the effectiveness of EWF annealing may be lattice-plane dependent.
- Nanoindentation tests showed a slight increase in hardness by 3.5%, and the reduced modulus approached near-pristine levels post-electropulsing, suggesting a balance between grain boundary strengthening and dislocation density reduction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klöwer, J. High Temperature Corrosion Behaviour of Iron Aluminides and Iron-Aluminium-Chromium Alloys. Mater. Corros. 1996, 47, 685–694. [Google Scholar] [CrossRef]
- Pint, B.A.; Terrani, K.A.; Brady, M.P.; Cheng, T.; Keiser, J.R. High Temperature Oxidation of Fuel Cladding Candidate Materials in Steam–Hydrogen Environments. J. Nucl. Mater. 2013, 440, 420–427. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Pint, B.A.; Terrani, K.A.; Field, K.G.; Yang, Y.; Snead, L.L. Development and Property Evaluation of Nuclear Grade Wrought FeCrAl Fuel Cladding for Light Water Reactors. J. Nucl. Mater. 2015, 467, 703–716. [Google Scholar] [CrossRef]
- Field, K.G.; Briggs, S.A.; Sridharan, K.; Howard, R.H.; Yamamoto, Y. Mechanical Properties of Neutron-Irradiated Model and Commercial FeCrAl Alloys. J. Nucl. Mater. 2017, 489, 118–128. [Google Scholar] [CrossRef]
- Eklund, J.; Hanif, I.; Bigdeli, S.; Jonsson, T. High Temperature Corrosion Behavior of FeCrAlSi Model Alloys in the Presence of Water Vapor and KCl at 600 °C—The Influence of Cr Content. Corros. Sci. 2022, 198, 110114. [Google Scholar] [CrossRef]
- Sun, Z.; Yamamoto, Y.; Chen, X. Impact Toughness of Commercial and Model FeCrAl Alloys. Mater. Sci. Eng. A 2018, 734, 93–101. [Google Scholar] [CrossRef]
- Liang, X.; Wang, H.; Pan, Q.; Zheng, J.; Liu, H.; Zhang, R.; Xu, Y.; Xu, Y.; Yi, D. Recrystallization and Mechanical Properties of Cold-Rolled FeCrAl Alloy during Annealing. J. Iron Steel Res. Int. 2020, 27, 549–565. [Google Scholar] [CrossRef]
- He, B.B.; Hu, B.; Yen, H.W.; Cheng, G.J.; Wang, Z.K.; Luo, H.W.; Huang, M.X. High Dislocation Density-Induced Large Ductility in Deformed and Partitioned Steels. Science 2017, 357, 1029–1032. [Google Scholar] [CrossRef]
- Sajuri, Z.; Mohamad Selamat, N.F.; Baghdadi, A.H.; Rajabi, A.; Omar, M.Z.; Kokabi, A.H.; Syarif, J. Cold-Rolling Strain Hardening Effect on the Microstructure, Serration-Flow Behaviour and Dislocation Density of Friction Stir Welded AA5083. Metals 2020, 10, 70. [Google Scholar] [CrossRef]
- Cruise, R.B.; Gardner, L. Residual Stress Analysis of Structural Stainless Steel Sections. J. Constr. Steel Res. 2008, 64, 352–366. [Google Scholar] [CrossRef]
- Park, S.-J.; Muraishi, S. Micromechanical Analysis of Residual Stress around Coarse Precipitates under Cold Rolling Conditions. Mech. Mater. 2021, 157, 103841. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, S.; Zhu, T.; Gu, S.; Shen, X. Microstructure and Intergranular Corrosion Behavior of HAZ in DP-TIG Welded DSS Joints. J. Mater. Process. Technol. 2018, 256, 254–261. [Google Scholar] [CrossRef]
- Gurova, T.; Gomes, L.S.; Peripolli, S.B.; Chavez, G.F.S.; Estefen, S.F.; Leontiev, A. Misorientation Changes and Residual Stresses Redistribution after Welding. A Physical Simulation. Mater. Res. 2019, 22, e20190360. [Google Scholar] [CrossRef]
- Shrestha, D.; Azarmi, F.; Tangpong, X.W. Effect of Heat Treatment on Residual Stress of Cold Sprayed Nickel-Based Superalloys. J. Therm. Spray Technol. 2022, 31, 197–205. [Google Scholar] [CrossRef]
- Weng, Z.; Liu, X.; Gu, K.; Guo, J.; Cui, C.; Wang, J. Modification of Residual Stress and Microstructure in Aluminium Alloy by Cryogenic Treatment. Mater. Sci. Technol. 2020, 36, 1547–1555. [Google Scholar] [CrossRef]
- Shang, F.; Kong, J.; Du, D.; Zhang, Z.; Li, Y. Effect of Cryogenic Treatment on Internal Residual Stresses of Hydrogen-Resistant Steel. Micromachines 2021, 12, 1179. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, H.; Qiu, S.; Zhang, Y.; He, K.; Wu, B. Cold-Rolling & Annealing Process for Nuclear Grade Wrought FeCrAl Cladding Alloy to Enhance the Strength and Ductility. J. Mater. Process. Technol. 2020, 277, 116434. [Google Scholar] [CrossRef]
- Mishra, R.S.; De, P.S.; Kumar, N. Residual Stresses and Mitigation Strategies. In Friction Stir Welding and Processing: Science and Engineering; Springer International Publishing: Cham, Switzerland, 2014; pp. 297–326. ISBN 978-3-319-07043-8. [Google Scholar]
- Zha, X.-Q.; Xiong, Y.; Gao, L.-Q.; Zhang, X.-Y.; Ren, F.-Z.; Wang, G.-X.; Cao, W. Effect of Annealing on Microstructure and Mechanical Properties of Cryo-Rolled 316LN Austenite Stainless Steel. Mater. Res. Express 2019, 6, 96506. [Google Scholar] [CrossRef]
- Bianchi, I.; Forcellese, A.; Simoncini, M.; Vita, A. Effect of in Situ and Furnace Thermal Annealing on the Mechanical Properties and Sustainability of 3D Printed Carbon-Peek Composites. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 09544054231209797. [Google Scholar] [CrossRef]
- Pan, L.; He, W.; Gu, B. Effects of Electric Current Pulses on Mechanical Properties and Microstructures of As-Quenched Medium Carbon Steel. Mater. Sci. Eng. A 2016, 662, 404–411. [Google Scholar] [CrossRef]
- Yi, K.; Xiang, S.; Zhou, M.; Zhang, X.; Du, F. Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current. Acta Metall. Sin. Engl. Lett. 2023, 36, 1511–1522. [Google Scholar] [CrossRef]
- Xiang, S.; Zhang, X. Residual Stress Removal Under Pulsed Electric Current. Acta Metall. Sin. Engl. Lett. 2020, 33, 281–289. [Google Scholar] [CrossRef]
- Long, P. Influence of Electropulsing Treatment on Residual Stresses and Tensile Strength of As-Quenched Medium Carbon Steel. J. Phys. Conf. Ser. 2019, 1187, 32054. [Google Scholar] [CrossRef]
- Haque, A.; Sherbondy, J.; Warywoba, D.; Hsu, P.; Roy, S. Room-Temperature Stress Reduction in Welded Joints through Electropulsing. J. Mater. Process. Technol. 2022, 299, 117391. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Nasu, S.; Tanigawa, H.; Ono, T.; Miyake, K.; Mibu, K.; Shinjo, T. Effect of Joule Heating in Current-Driven Domain Wall Motion. Appl. Phys. Lett. 2004, 86, 12511. [Google Scholar] [CrossRef]
- Lienig, J.; Thiele, M. Fundamentals of Electromigration-Aware Integrated Circuit Design; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-73557-3. [Google Scholar] [CrossRef]
- Mecklenburg, M.; Zutter, B.T.; Ling, X.Y.; Hubbard, W.A.; Regan, B.C. Visualizing the Electron Wind Force in the Elastic Regime. Nano Lett. 2021, 21, 10172–10177. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Hua, Y.; Wang, X.; Zhao, X.; Chen, L.; Zhou, H.; Wang, J.; Berndt, C.C.; Li, W. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties. Materials 2018, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Huang, X. Residual Stress Reduction by Combined Treatment of Pulsed Magnetic Field and Pulsed Current. Mater. Sci. Eng. A 2011, 528, 6287–6292. [Google Scholar] [CrossRef]
- Xu, Z.S.; Lai, Z.H.; Chen, Y.X. Effect of Electric Current on the Recrystallization Behavior of Cold Worked α—Ti. Scr. Metall. 1988, 22, 187–190. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, Y.; Liu, B. Experimental and Simulated Investigation of the Deformation Behavior and Microstructural Evolution of Ti6554 Titanium Alloy during an Electropulsing-Assisted Microtension Process. Mater. Sci. Eng. A 2022, 838, 142745. [Google Scholar] [CrossRef]
- Waryoba, D.; Islam, Z.; Wang, B.; Haque, A. Low Temperature Annealing of Metals with Electrical Wind Force Effects. J. Mater. Sci. Technol. 2019, 35, 465–472. [Google Scholar] [CrossRef]
- Hoving, S.J.; Lodder, A.; Sorbello, R.S. Finite-Cluster Description of Electromigration. Phys. Rev. B Condens. Matter 1982, 25, 6178–6187. [Google Scholar]
- Fan, S.; He, B.; Liu, M. Effect of Pulse Current Density on Microstructure of Ti-6Al-4V Alloy by Laser Powder Bed Fusion. Metals 2022, 12, 81327. [Google Scholar] [CrossRef]
- Rahman, M.H.; Oh, H.; Waryoba, D.; Haque, A. Room Temperature Control of Grain Orientation via Directionally Modulated Current Pulses. Mater. Res. Express 2023, 10, 116521. [Google Scholar] [CrossRef]
- Rahman, M.H.; Glavin, N.; Haque, A.; Ren, F.; Pearton, S.J. Effect of High Current Density Pulses on Performance Enhancement of Optoelectronic Devices. ECS J. Solid State Sci. Technol. 2024, 13, 25003. [Google Scholar] [CrossRef]
- Trimby, P.; Anderson, I.; Larsen, K.; Hjelmstad, M.; Thomsen, K.; Mehnert, K. Advanced Classification of Microstructures in EBSD Datasets Using AZtecCrystal. Microsc. Microanal. 2020, 26, 13410. [Google Scholar] [CrossRef]
- Wang, R.; Xu, Z.; Jiang, Y.; Tang, G.; Wan, J.; Chou, K.J.-C.; Li, Q. The Coupling of Thermal and Athermal Effect in High-Density Multiple Pulse Continuous Treatment of AZ31. Mater. Des. 2022, 215, 110495. [Google Scholar] [CrossRef]
- Jarzębska, A.; Maj, Ł.; Bieda, M.; Chulist, R.; Wojtas, D.; Wątroba, M.; Janus, K.; Rogal, Ł.; Sztwiertnia, K. Dynamic Recrystallization and Its Effect on Superior Plasticity of Cold-Rolled Bioabsorbable Zinc-Copper Alloys. Materials 2021, 14, 3483. [Google Scholar] [CrossRef]
- Ding, S.; Khan, S.A.; Yanagimoto, J. Metadynamic Recrystallization Behavior of 5083 Aluminum Alloy under Double-Pass Compression and Stress Relaxation Tests. Mater. Sci. Eng. A 2021, 822, 141673. [Google Scholar] [CrossRef]
- Pan, D.; Wang, Y.; Guo, Q.; Zhang, D.; Xu, X.; Zhao, Y. Grain Refinement of Al–Mg–Si Alloy without Any Mechanical Deformation and Matrix Phase Transformation via Cyclic Electro-Pulsing Treatment. Mater. Sci. Eng. A 2021, 807, 140916. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, X. Refining the Microstructure to Strengthen Casting Titanium Alloy by Electric Pulse. Mater. Sci. Eng. A 2022, 849, 143519. [Google Scholar] [CrossRef]
- Lee, M.; Yu, J.; Bae, M.H.; Won, J.W.; Lee, T. Accelerated Recrystallization Behavior of Commercially Pure Titanium Subjected to an Alternating-Current Electropulse. J. Mater. Res. Technol. 2021, 15, 5706–5711. [Google Scholar] [CrossRef]
- Hou, M.; Li, K.; Li, X.; Zhang, X.; Rui, S.; Wu, Y.; Cai, Z. Effects of Pulsed Magnetic Fields of Different Intensities on Dislocation Density, Residual Stress, and Hardness of Cr4Mo4V Steel. Crystals 2020, 10, 115. [Google Scholar] [CrossRef]
- Li, H.; Hsu, E.; Szpunar, J.; Utsunomiya, H.; Sakai, T. Deformation Mechanism and Texture and Microstructure Evolution during High-Speed Rolling of AZ31B Mg Sheets. J. Mater. Sci. 2008, 43, 7148–7156. [Google Scholar] [CrossRef]
- Lingyan, Z.; Yinghao, C.; Fuqiang, Y. Effect of Cold Working on the Residual Stress around the Notch Front of Stress Corrosion Cracking. IOP Conf. Ser. Mater. Sci. Eng. 2018, 408, 12007. [Google Scholar] [CrossRef]
- Terner, M.; Lee, J.; Marchese, G.; Biamino, S.; Hong, H.U. Electron Backscattered Diffraction to Estimate Residual Stress Levels of a Superalloy Produced by Laser Powder Bed Fusion and Subsequent Heat Treatments. Materials 2020, 13, 4643. [Google Scholar] [CrossRef]
- Krawczyk, B.; Cook, P.; Hobbs, J.; Engelberg, D.L. Corrosion Behavior of Cold Rolled Type 316L Stainless Steel in HCl-Containing Environments. Corrosion 2017, 73, 1346–1358. [Google Scholar] [CrossRef]
- Kamachi Mudali, U.; Shankar, P.; Ningshen, S.; Dayal, R.K.; Khatak, H.S.; Raj, B. On the Pitting Corrosion Resistance of Nitrogen Alloyed Cold Worked Austenitic Stainless Steels. Corros. Sci. 2002, 44, 2183–2198. [Google Scholar] [CrossRef]
- Rahnama, A.; Qin, R. Room Temperature Texturing of Austenite/Ferrite Steel by Electropulsing. Sci. Rep. 2017, 7, 42732. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Schlueter, K.; Wurmshuber, M.; Reitgruber, M.; Kiener, D. Open-Cell Tungsten Nanofoams: Scaling Behavior and Structural Disorder Dependence of Young’s Modulus and Flow Strength. Mater. Des. 2021, 197, 109187. [Google Scholar] [CrossRef]
Frequency (Hz) | Pulse Width (μs) | Processing Time (s) | Average Temperature during Annealing (°C) | |
---|---|---|---|---|
2 | 40 | 60 | 235.15 | 25 |
2 | 40 | 60 | 1230.85 | 28.5 |
2 | 40 | 60 | 1805.31 | 50 |
2 | 40 | 60 | 2215.38 | 65 |
2 | 40 | 60 | 2666.67 | 85 |
2 | 40 | 60 | 3307.70 | 96.5 |
FWHM | Pristine | Rolled | Pulsed at 96.5 °C |
---|---|---|---|
Peak A | 0.2151° | 0.320° (+48.76%) | 0.215° (−48.91%) |
Peak B | 0.284° | 0.449° (+58.1%) | 0.413° (−12.64%) |
Peak C | 0.36° | 0.577° (+60.27%) | 0.431° (−40.6%) |
Conditions | Hardness (GPa) | Reduced Modulus (GPa) |
---|---|---|
Pristine | ||
Rolled | (+15.66%) | (+14.04%) |
Pulsed | (+3.5%) | (−11.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.H.; Todaro, S.; Warner, L.; Waryoba, D.; Haque, A. Elimination of Low-Angle Grain Boundary Networks in FeCrAl Alloys with the Electron Wind Force at a Low Temperature. Metals 2024, 14, 331. https://doi.org/10.3390/met14030331
Rahman MH, Todaro S, Warner L, Waryoba D, Haque A. Elimination of Low-Angle Grain Boundary Networks in FeCrAl Alloys with the Electron Wind Force at a Low Temperature. Metals. 2024; 14(3):331. https://doi.org/10.3390/met14030331
Chicago/Turabian StyleRahman, Md Hafijur, Sarah Todaro, Luke Warner, Daudi Waryoba, and Aman Haque. 2024. "Elimination of Low-Angle Grain Boundary Networks in FeCrAl Alloys with the Electron Wind Force at a Low Temperature" Metals 14, no. 3: 331. https://doi.org/10.3390/met14030331
APA StyleRahman, M. H., Todaro, S., Warner, L., Waryoba, D., & Haque, A. (2024). Elimination of Low-Angle Grain Boundary Networks in FeCrAl Alloys with the Electron Wind Force at a Low Temperature. Metals, 14(3), 331. https://doi.org/10.3390/met14030331