Orientation Relationship of Intergrowth Al2Fe and Al5Fe2 Intermetallics Determined by Single-Crystal X-ray Diffraction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Single-Crystal XRD Patterns
3.2. The Refinement of Al2Fe Phase and Al5Fe2 Phase
3.3. Structure Models for Intergrowth Al12.48Fe6.52 Phase and Al5.72Fe2 Phase in Real Space
3.4. Interfaces between Al12.48Fe6.52 Phase and Al5.72Fe2 Phases
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Fung, K.K.; Yang, C.Y.; Zhou, Y.Q.; Zhao, J.G.; Zhan, W.S.; Shen, B.G. Icosahedrally related decagonal quasicrystal in rapidly cooled Al-14-at.%-Fe alloy. Phys. Rev. Lett. 1986, 56, 2060–2063. [Google Scholar] [CrossRef]
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. [Google Scholar] [CrossRef]
- Hamada, T.; Higashi, M.; Niitsu, K.; Inui, H. Phase equilibria among η-Fe2Al5 and its higher-ordered phases. Sci. Technol. Adv. Mater. 2021, 22, 373–385. [Google Scholar] [CrossRef]
- Khalid, M.Z.; Friis, J.; Ninive, P.H.; Marthinsen, K.; Ringdalen, I.G.; Strandlie, A. First-principles study of tensile and shear strength of an Fe2Al5//Fe interface. Comput. Mater. Sci. 2021, 192, 110319. [Google Scholar] [CrossRef]
- Becker, H.; Hielscher, R.; Leineweber, A. Interplay between Habit Plane and Orientation Relationship in an Electron Backscatter Diffraction Analysis: Using the Example of η′-Al8Fe3 in η-Al5Fe2. Crystals 2022, 12, 813. [Google Scholar] [CrossRef]
- Krisam, S.; Becker, H.; Silvayeh, Z.; Treichel, A.; Domitner, J.; Povoden-Karadeniz, E. Formation of long-range ordered intermetallic η’’’phase and the involvement of silicon during welding of aluminum-steel sheets. Mater. Charact. 2022, 187, 111862. [Google Scholar] [CrossRef]
- Liao, H.; Mo, L.; Zhou, X.; Yuan, Z.; Du, J. Revealing the nucleation event of Mg-Al alloy induced by Fe impurity. Int. J. Min. Met. Mater. 2022, 29, 1317–1321. [Google Scholar] [CrossRef]
- Corby, R.N.; Black, P.J. The structure of FeAl2 by anomalous dispersion methods. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 2669–2677. [Google Scholar] [CrossRef]
- Bastin, G.F.; Van Loo, F.J.J.; Vrolijk, J.W.G.A.; Wolff, L.R. Crystallography of aligned Fe-Al eutectoid. J. Cryst. Growth 1978, 43, 745–751. [Google Scholar] [CrossRef]
- Chumak, I.; Richter, K.W.; Ehrenberg, H. Redetermination of iron dialuminide, FeAl2. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2010, 66, i87–i88. [Google Scholar] [CrossRef] [PubMed]
- Schubert, K.; Rösler, U.; Kluge, M.; Anderko, K.; Härle, L. Kristallographische ergebnisse an phasen mit durchdringungsbindung. Sci. Nat. 1953, 40, 437. [Google Scholar] [CrossRef]
- Burkhard, U.; Grin, Y.; Ellner, M.; Peters, K. Structure refinement of the iron—Aluminium phase with the approximate composition Fe2Al5. Acta Crystallogr. Sect. B Struct. Sci. 1994, 50, 313–316. [Google Scholar] [CrossRef]
- Becker, H.; Leineweber, A. Atomic channel occupation in disordered η-Al5Fe2 and in two of its low-temperatures phases, η″ and η‴. Intermetallics 2018, 93, 251–262. [Google Scholar] [CrossRef]
- Okamoto, N.L.; Higashi, M.; Inui, H. Crystal structure of η″-Fe3Al7+x determined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. Sci. Technol. Adv. Mater. 2019, 20, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, N.L.; Okumura, J.; Higashi, M.; Inui, H. Crystal structure of η′-Fe3Al8; low-temperature phase of η-Fe2Al5 accompanied by an ordered arrangement of Al atoms of full occupancy in the c-axis chain sites. Acta Mater. 2017, 129, 290–299. [Google Scholar] [CrossRef]
- Becker, H.; Amirkhanyan, L.; Kortus, J.; Leineweber, A. Powder-X-ray diffraction analysis of the crystal structure of the η′-Al8Fe3 (η′-Al2.67Fe) phase. J. Alloys Compd. 2017, 721, 691–696. [Google Scholar] [CrossRef]
- Mihalkovič, M.; Widom, M. Structure and stability of Al2Fe and Al5Fe2: First-principles total energy and phonon calculations. Phys. Rev. B. 2012, 85, 014113. [Google Scholar] [CrossRef]
- Hirata, A.; Mori, Y.; Ishimaru, M.; Koyama, Y. Role of the triclinic Al2Fe structure in the formation of the Al5Fe2-approximant. Philos. Mag. Lett. 2008, 88, 491–500. [Google Scholar] [CrossRef]
- Romero-Romero, J.R.; López-Miranda, J.L.; Esparza, R.; Espinosa-Medina, M.A.; Rosas, G. High-energy ball-milling of FeAl2 and Fe2Al5 intermetallic systems. Mater. Sci. Forum. 2013, 755, 47–52. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Liu, B.; Zhu, Z.; Li, Y.; Chen, H. Interface characterization and tensile performance of deep-penetration welding-brazing of thick aluminium/steel butt joints. Mater. Charact. 2022, 186, 111811. [Google Scholar] [CrossRef]
- Li, R.; Li, T.; Xu, J.; Ding, H. A novel amorphous-nanocrystalline interface layer for bonding immiscible Mg/steel by pinless friction stir spot weld with preset nanoscale Fe2Al5 film. Mater. Charact. 2023, 203, 113092. [Google Scholar] [CrossRef]
- APEX3, SAINT and SADABS; Software for Data Reduction, Absorption Correction and Structure Solution; Bruker AXS Inc.: Madison, WI, USA, 2015.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Putz, H.; Brandenburg, K. Diamond 4.2.2 Crystal and Molecular Structure Visualization. Crystal. Impact Kreuzherrenstr. 2017, 102, 53227. [Google Scholar]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Aroyo. M.-I. International Tables for Crystallography Vol.A: Space-Group Symmetry; International Union of Crystallography: Chester, UK, 2016; pp. 22–28. [Google Scholar]
- Lobanov, M.L.; Zorina, M.A.; Reznik, P.L.; Redikultsev, A.A.; Pastukhov, V.I.; Karabanalov, M.S. Crystallography of Recrystallization in Al and Cu with Fiber Texture. Metals 2023, 13, 1639. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Zhang, A.; Stein, F.; Xu, Z.; Tang, Z.; Ren, D.; Zeng, J. The Mechanism of Dendrite Formation in a Solid-State Transformation of High Aluminum Fe-Al Alloys. Materials 2023, 16, 2691. [Google Scholar] [CrossRef]
Chemical Formula | Al12.48Fe6.52 | Al5.72Fe2 |
---|---|---|
a, b, c/Å | 4.8569 (5), 6.4389 (7), 8.7323(10) | 7.635 (3), 6.392 (2), 4.2007 (14) |
α, β, γ/° | 87.873 (4), 74.463 (4), 83.060 (4) | 90, 90, 90 |
V/Å3 | 261.18 (5) | 205.01 (12) |
Z | 4 | 4 |
Space group | P | Cmcm |
Crystal system | Triclinic | Orthorhombic |
Diffractometer | Bruker D8 Venture Photon 100 COMS | |
Monochromator | Graphite | |
Tmeas/K | 300 (2) | |
Radiation | Mo-Kα, λ = 0.71073 (Å) | |
Scan mode | φ and ω scan | |
Time per step/s | 3 | |
Absorption correction | Multi-scan | |
F (000) | 332 | 253 |
θ range/° | 2.421~27.571 | 4.158~24.997 |
μ/mm−1 | 9.803 | 8.088 |
No. measured reflections | 7202 | 283 |
No. unique reflections | 1210 | 100 |
No. observed reflections (I > 2σ (I)) | 907 | 76 |
No. reflections used in refinement | 1210 | 100 |
No. parameters used in refinement | 89 | 19 |
Reflection range | −6 ≤ h ≤ 6, −8 ≤ k ≤ 8, −11 ≤ l ≤ 11 | −6 ≤ h ≤ 9, −6 ≤ k ≤ 7, −4 ≤ l ≤ 4 |
Rint | 0.0957 | 0.0567 |
R (σ) | 0.0692 | 0.0915 |
Final R indices (Fobs > 4σ (Fobs)) | R1 = 0.0543, ωR2 = 0.1044 | R1 = 0.0363, ωR2 = 0.0844 |
R indices (all data) | R1 = 0.0797, ωR2 = 0.1044 | R1 = 0.0597, ωR2 = 0.0844 |
Goodness of fit | 1.057 | 1.017 |
Label | Site | x | y | z | Occ. | Ueq |
---|---|---|---|---|---|---|
Fe1 | 2i | 0.1425 (3) | 0.15847(19) | 0.41690 (14) | 1 | 0.0066 (3) |
Fe2 | 2i | 0.2296 (3) | 0.3508 (2) | 0.87452 (15) | 1 | 0.0102 (3) |
Fe3 | 1a | 0.000000 | 0.000000 | 0.000000 | 1 | 0.0083 (4) |
Fe4A | 2i | 0.1640 (3) | 0.4744 (2) | 0.59039 (18) | 0.758 (12) | 0.0115 (5) |
Al4B | 2i | 0.1640 (3) | 0.4744 (2) | 0.59039 (18) | 0.242 (12) | 0.0115 (5) |
Al1 | 2i | 0.4915 (6) | 0.0106 (4) | 0.1650 (3) | 1 | 0.0129 (6) |
Al2 | 2i | 0.0430 (6) | 0.1158 (5) | 0.7096 (3) | 1 | 0.0135 (6) |
Al3 | 2i | 0.5994 (6) | 0.1853 (4) | 0.5253 (3) | 1 | 0.0140 (6) |
Al4 | 2i | 0.0150 (6) | 0.2924 (4) | 0.1691 (3) | 1 | 0.0123 (6) |
Al5 | 2i | 0.3101 (5) | 0.6635 (4) | 0.0349 (3) | 1 | 0.0079 (6) |
Al6 | 2i | 0.4198 (6) | 0.4451 (4) | 0.2983 (3) | 1 | 0.0102 (6) |
Label | Site | x | y | z | Occ. | Ueq |
---|---|---|---|---|---|---|
Fe1 | 4c | 0.000000 | 0.8279 (4) | 0.250000 | 1 | 0.0081 (8) |
Al1 | 4b | 0.000000 | 0.500000 | 0.000000 | 0.50 (10) | 0.03 (2) |
Al2 | 8f | 0.000000 | 0.537 (6) | 0.81 (4) | 0.18 (5) | 0.03 (2) |
Al3 | 8g | 0.1888 (4) | 0.1454 (6) | 0.250000 | 1 | 0.0158 (12) |
[uvw] Al12.48Fe6.52//[uvw] Al5.72Fe2 | (hkl) Al12.48Fe6.52//(hkl) Al5.72Fe2 | |
---|---|---|
OR1 | [010] Al12.48Fe6.5226] Al5.72Fe2 | 0) Al5.72Fe2 |
OR2 | [010] Al12.48Fe6.5226] Al5.72Fe2 | 0) Al5.72Fe2 |
OR3 | [001] Al12.48Fe6.52//[794] Al5.72Fe2 | ) Al5.72Fe2 |
OR4 | ] Al12.48Fe6.52//[001] Al5.72Fe2 | 10) Al5.72Fe2 |
Orientation Relationship | Conversion Matrix B | Conversion Matrix A | |
---|---|---|---|
OR1 | ) Al12.48Fe6.52//(111) Al5.72Fe2 [100]11] Al5.72Fe2 | ||
OR2 | 0) Al5.72Fe2 [010] 26] Al5.72Fe2 | ||
OR3 | ) Al5.72Fe2 [001] Al12.48Fe6.52//[794] Al5.72Fe2 | ||
OR4 | 10) Al5.72Fe2 ] Al12.48Fe6.52//[001] Al5.72Fe2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fan, C.; Wen, B.; Xu, Z.; Fu, R.; Zhang, L. Orientation Relationship of Intergrowth Al2Fe and Al5Fe2 Intermetallics Determined by Single-Crystal X-ray Diffraction. Metals 2024, 14, 337. https://doi.org/10.3390/met14030337
Liu Y, Fan C, Wen B, Xu Z, Fu R, Zhang L. Orientation Relationship of Intergrowth Al2Fe and Al5Fe2 Intermetallics Determined by Single-Crystal X-ray Diffraction. Metals. 2024; 14(3):337. https://doi.org/10.3390/met14030337
Chicago/Turabian StyleLiu, Yibo, Changzeng Fan, Bin Wen, Zhefeng Xu, Ruidong Fu, and Lifeng Zhang. 2024. "Orientation Relationship of Intergrowth Al2Fe and Al5Fe2 Intermetallics Determined by Single-Crystal X-ray Diffraction" Metals 14, no. 3: 337. https://doi.org/10.3390/met14030337
APA StyleLiu, Y., Fan, C., Wen, B., Xu, Z., Fu, R., & Zhang, L. (2024). Orientation Relationship of Intergrowth Al2Fe and Al5Fe2 Intermetallics Determined by Single-Crystal X-ray Diffraction. Metals, 14(3), 337. https://doi.org/10.3390/met14030337