The Influence of Groove Geometry on the Creep Fracture Behavior of Dissimilar Metal Welds between Ferritic Heat-Resistant Steels and Nickel-Based Alloys
Abstract
:1. Introduction
2. Creep Damage Model
2.1. Development of the Improved Creep Damage Model
2.2. Model Parameter Acquisition
2.3. Validity Verification of Proposed Model
2.3.1. Finite Element Model and Related Settings
2.3.2. Simulation Results and Analysis
3. Simulation and Experiments
3.1. FEM Model
3.2. DMW Manufacturing
3.3. Creep Tests and Microstructural Characterization
4. Results
4.1. Finite Element Simulation Results and Analysis
4.2. Creep Test Results and Analysis
4.3. Crack Propagation Path and Hardness Test Results
4.4. Microstructural Observation
4.5. EBSD Results
5. Discussion
5.1. Analysis of Joint Failure Mechanisms
5.1.1. Failure Analysis of V-Groove Joints
5.1.2. Mechanical Factors Contributing to Creep Failure
5.2. The Role of the Stepped Groove
5.2.1. Impact of the Stepped Groove on Crack Propagation
5.2.2. Creep Life Extension and Deformation Monitoring
5.2.3. Simulation and Stress Concentration Effects
6. Conclusions
- An improved creep damage model considering stress triaxiality was proposed to simulate the damage evolution in the structurally constrained regions near dissimilar interfaces. Compared with the conventional L-M model, the new model can better capture creep damage localization in complex DMW structures.
- The simulation results indicated that the stepped groove could alter the creep crack propagation path, preventing it from extending along the weld/HAZ interface at the “step” and instead propagating into the base metal or weld with better creep properties. This delayed the development of creep cracks and served to prolong the life of the joint.
- The failure location of the DMW with a V-groove was in the HAZ, characterized by a typical Type IV fracture, mainly related to factors such as lower hardness in the fine-grained zone/critical HAZ, lack of carbide pinning at grain boundaries, and coarsening of carbides. The creep failure of the DMW with a stepped groove initially occurred along the weld/HAZ interface, which might be associated with a higher interfacial stress gradient. When the crack propagated along the interface to the “step,” it then entered into the base metal.
- The impact of the stepped groove on the creep life of DMWs was the balanced result of two contradictory factors: on the one hand, it extended the creep life by changing the crack propagation path, and on the other hand, it exacerbated the stress concentration at the interface, accelerating the development of interfacial creep damage. Proper design of the step geometry is needed to maximize the positive effect while minimizing the negative effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, W.; Yan, S. Failure and Supervision of Important Metal Components in Power Plants; China Electric Power Press: Beijing, China, 2009. [Google Scholar]
- Abe, F.; Kern, T.-U.; Viswanathan, R. Creep-Resistant Steels; Elsevier: Amsterdam, The Netherlands, 2008; pp. 485–491. [Google Scholar]
- Yamazaki, M.; Watanabe, T.; Hongo, H.; Tabuchi, M. Creep rupture properties of weld joints of heat resistant steels. J. Power Energy Syst. 2008, 2, 1140–1149. [Google Scholar] [CrossRef]
- Watanabe, T.; Tabuchi, M.; Yamazaki, M.; Hongo, H.; Tanabe, T. Creep damage evaluation of 9Cr–1Mo–V–Nb steel weld joints showing Type IV fracture. Int. J. Press. Vessel. Pip. 2006, 83, 63–71. [Google Scholar] [CrossRef]
- Li, K.; Li, X.; Zhang, Y. Microstructure evolution and high temperature failure mechanism of dissimilar metal welded joints. Electr. Weld. Mach. 2020, 50, 17–43. [Google Scholar] [CrossRef]
- Liu, Y.; Tsukamoto, S.; Shirane, T.; Abe, F. Formation Mechanism of Type Ⅳ Failure in High Cr Ferritic Heat-Resistant Steel-Welded Joint. Metall. Mater. Trans. A—Phys. Metall. Mater. Sci. 2013, 44A, 4626–4633. [Google Scholar] [CrossRef]
- Albert, S.K.; Tabuchi, M.; Hongo, H.; Watanabe, T.; Kubo, K.; Matsui, M. Effect of welding process and groove angle on type Ⅳ cracking behaviour of weld joints of a ferritic steel. Sci. Technol. Weld. Join. 2013, 10, 149–157. [Google Scholar] [CrossRef]
- Nicholson, R.D. Creep rupture properties of nickel-base transition joints after long-term service. Mater. Sci. Technol. 1986, 2, 686–692. [Google Scholar] [CrossRef]
- Kumar, A.; Guguloth, K.; Pandey, S.M.; Fydrych, D.; Sirohi, S.; Pandey, C. Study on Microstructure-Property Relationship of Inconel 617 Alloy/304L SS Steel Dissimilar Welds Joint. Metall. Mater. Trans. A 2023, 54, 3844–3870. [Google Scholar] [CrossRef]
- Bhanu, V.; Pandey, S.M.; Gupta, A.; Pandey, C. Dissimilar weldments of P91 and Incoloy 800HT: Microstructure, mechanical properties, and residual stresses. Int. J. Press. Vessel. Pip. 2022, 199, 104782. [Google Scholar] [CrossRef]
- Bhanu, V.; Gupta, A.; Pandey, C. Investigation on joining P91 steel and Incoloy 800HT through gas tungsten arc welding for Advanced Ultra Super Critical (AUSC) power plants. J. Manuf. Process. 2022, 80, 558–580. [Google Scholar] [CrossRef]
- Kumar, R.; Varma, A.; Kumar, Y.R.; Neelakantan, S.; Jain, J. Enhancement of mechanical properties through modified post-weld heat treatment processes of T91 and Super304H dissimilar welded joint. J. Manuf. Process. 2022, 78, 59–70. [Google Scholar] [CrossRef]
- Vanaja, J.; Dey, H.C.; Prasad Reddy, G.V.; Laha, K.; Vasudevan, M. Creep Performance and Microstructural Characterization of Electron-Beam Welded 316LN SS-Grade 91 Steel Dissimilar Joint. Metall. Mater. Trans. A 2023, 54, 3005–3020. [Google Scholar] [CrossRef]
- Singh, P.; Arora, N. Improving mechanical properties of P91 and IN617 dissimilar weld joints for advanced ultra super critical power plants by buttering technique. Mater. Lett. 2022, 327, 133084. [Google Scholar] [CrossRef]
- Santoso, A.; Widjajanto, T.; Mubarok, F.; Suwarno. The Influence of the Buttering Layer on the Creep Properties of Ferritic-Martensitic T91 and Austenitic Stainless Steel 347H Dissimilar Welding. In Proceedings of the Recent Advances in Mechanical Engineering, Singapore; 2022; pp. 27–34. [Google Scholar] [CrossRef]
- Hyde, T.H.; Sun, W.; Williams, J.A. Creep analysis of pressurized circumferential pipe weldments—A review. J. Strain Anal. Eng. Des. 2003, 38, 1–27. [Google Scholar] [CrossRef]
- Parker, J.; Siefert, J. Use of a stepped preparation to improve the damage tolerance of grade 91 steel welds. Mater. High Temp. 2021, 38, 262–274. [Google Scholar] [CrossRef]
- Rabotnov, Y.N. Creep Problems in Structure Members; North-Holland: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Kachanov, L.M. Rupture time under condition of creep. Izv. Akad. Nauk. SSSR Otd Tekhn Nauk. 1958, 8, 26–31. [Google Scholar]
- Liu, Y.; Murakami, S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis. JSME Int. J. Ser. A 1998, 41, 57–65. [Google Scholar] [CrossRef]
- Hyde, C.J.; Hyde, T.H.; Sun, W.; Becker, A.A. Damage mechanics based predictions of creep crack growth in 316 stainless steel. Eng. Fract. Mech. 2010, 77, 2385–2402. [Google Scholar] [CrossRef]
- Naumenko, K.; Altenbach, H. A phenomenological model for anisotropic creep in a multipass weld metal. Arch. Appl. Mech. 2005, 74, 808–819. [Google Scholar] [CrossRef]
- Hayhurst, D.R.; Hayhurst, R.J.; Vakili-Tahami, F. Continuum damage mechanics predictions of creep damage initiation and growth in ferritic steel weldments in a medium bore branched pipe under constant pressure at 590 °C using a five-material weld model. Proc. R. Soc. A Math. Phys. Eng. Sci. 2005, 461, 2303–2326. [Google Scholar] [CrossRef]
- Goyal, S.; Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Mathew, M.D. Finite element analysis of type IV cracking in 2.25Cr–1Mo steel weldment based on micro-mechanistic approach. Philos. Mag. 2011, 91, 3128–3154. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.Y.; Wang, C.; Zhang, D. Creep Failure Simulation in 9%Cr Heat-Resistant Steel Joint Based on the Continuum Damage Mechanics. Strength Mater. 2022, 54, 553–556. [Google Scholar] [CrossRef]
- Honda, T.; Fukahori, T.; Tokiyoshi, T.; Chuman, Y.; Igari, T.; Cocks, A.C.F. Creep damage analysis of mod.9Cr-1Mo steel welds considering void mechanics modeling. Int. J. Press. Vessel. Pip. 2021, 189, 104251. [Google Scholar] [CrossRef]
- Ragab, R.; Parker, J.; Li, M.; Liu, T.; Sun, W. Modelling of a Grade 91 power plant pressurised header weldment under ultra super-critical creep conditions. Int. J. Press. Vessel. Pip. 2021, 192, 104389. [Google Scholar] [CrossRef]
- Ragab, R.; Parker, J.; Li, M.; Liu, T.; Morris, A.; Sun, W. Requirements for and challenges in developing improved creep ductility-based constitutive models for tempered martensitic CSEF steels. J. Mater. Res. Technol. 2022, 17, 3337–3360. [Google Scholar] [CrossRef]
- Cano, J.A.; Stewart, C.M. A continuum damage mechanics (CDM) based Wilshire model for creep deformation, damage, and rupture prediction. Mater. Sci. Eng. A 2021, 799, 140231. [Google Scholar] [CrossRef]
- Kota, S.; Kazuhiro, K.; Fujio, A.; Taniuchi, Y.; Sekido, K.; Nojima, T.; Ohba, T.; Kushima, H.; Miyazaki, H.; Hongo, H.; et al. Catalog of NIMS creep data sheets. Sci. Technol. Adv. Mater. 2019, 20, 1131–1149. [Google Scholar]
- Song, S.H.; Wu, J.; Wei, X.J.; Kumar, D.; Liu, S.J.; Weng, L.Q. Creep property evaluation of a 2.25Cr–1Mo low alloy steel. Mater. Sci. Eng. A 2010, 527, 2398–2403. [Google Scholar] [CrossRef]
- Laha, K.; Chandravathi, K.S.; Rao, K.; Mannan, S.; Sastry, D. Prediction of creep deformation and rupture behaviour of 2.25Cr–1Mo weld joint. Int. J. Press. Vessel. Pip. 2000, 77, 761–769. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, M.; Cai, Z.; Han, C.; Li, X.; Huo, X.; Fan, M.; Rui, S.; Li, K.; Pan, J. Effect of nickel-based filler metal types on creep properties of dissimilar metal welds between Inconel 617B and 10% Cr martensitic steel. J. Mater. Res. Technol. 2021, 14, 2289–2301. [Google Scholar] [CrossRef]
- Kamaya, M.; Wilkinson, A.J.; Titchmarsh, J.M. Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction. Acta Mater. 2006, 54, 539e48. [Google Scholar] [CrossRef]
- Kobayashi, D.; Miyabe, M.; Kagiya, Y.; Sugiura, R.; Yokobori, A.T. An assessment and estimation of the damage progression behavior of IN738LC under various applied stress conditions based on EBSD analysis. Metall. Mater. Trans. 2013, 44, 3123e35. [Google Scholar] [CrossRef]
- Rui, S.-S.; Shang, Y.-B.; Fan, Y.-N.; Han, Q.-N.; Niu, L.-S.; Shi, H.-J.; Hashimoto, K.; Komai, N. EBSD analysis of creep deformation induced grain lattice distortion: A new method for creep damage evaluation of austenitic stainless steels. Mater. Sci. Eng. A 2018, 733, 329e37. [Google Scholar] [CrossRef]
- Abson, D.J.; Rothwell, J.S. Review of type IV cracking of weldments in 9–12%Cr creep strength enhanced ferritic steels. Int. Mater. Rev. 2013, 58, 437–473. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Lu, F.; Tang, X.; Cui, H.; Gao, Y. Creep behavior and microstructure evaluation of welded joint in dissimilar modified 9Cr–1Mo steels. Mater. Sci. Eng. A 2015, 644, 337–346. [Google Scholar] [CrossRef]
- Francis, J.; Mazur, W.; Bhadeshia, H. Review type IV cracking in ferritic power plant steels. Mater. Sci. Technol. 2006, 22, 1387–1395. [Google Scholar] [CrossRef]
Material | Elastic Modulus E, GPa | Poisson’s Ratio v | Expansion Coefficient 1 | Yield Strength |
---|---|---|---|---|
WM 2(IN82) | 190 | 0.3 | 1.570 | 240 |
ICHAZ 3 (2.25Cr1Mo) | 176 | 0.3 | 1.406 | 170 |
CGHAZ 4/BM 5 (2.25Cr-1Mo) | 176 | 0.3 | 1.406 | 170 |
Parameter | BM | CGHAZ | ICHAZ | WM |
---|---|---|---|---|
2.91 × 10−9 | 1.46 × 10−10 | 1.55 × 10−8 | 4.5 × 10−38 | |
n | 3.1017 | 3.1017 | 3.1017 | 13.16 |
B | 1.79 × 10−9 | 1.79 × 10−9 | 7.16 × 10−9 | 2.05 × 10−37 |
p | 3.0248 | 3.0248 | 3.0248 | 14.361 |
q | 3.46 | 3.46 | 3.46 | 3.46 |
Element | Fe | Ni | Cr | Mo | Co | Al |
---|---|---|---|---|---|---|
IN82 (ERNiCr-3) | 0.2 | Bal. | 20.4 | - | 0.03 | - |
BM-2.25Cr1Mo | Bal. | 0.1 | 2.2 | 0.92 | - | 0.03 |
BM-TP347H | Bal. | 9.07 | 19.4 | 0.29 | - | - |
Element | Nb | C | Si | Mn | Cu | Ti |
IN82 (ERNiCr-3) | 2.48 | 0.01 | 0.05 | 3.2 | <0.01 | 0.37 |
BM-2.25Cr1Mo | <0.01 | 0.07 | 0.2 | 0.52 | 0.14 | <0.01 |
BM-TP347H | 0.68 | 0.05 | 0.44 | 1.75 | 0.15 | - |
Voltage (V) | Current (A) | Welding Speed (cm/min) | Wire Feed Speed (cm/min) | Wire Diameter (mm) | Shielding Gas | Gas Flow (L/min) |
---|---|---|---|---|---|---|
15 | 180 | 15 | 180 | 1.0 | AR | 8–10 |
Location 1 | Location 2 | Location 3 | |
---|---|---|---|
V-groove test specimen | 2.1013 | 3.1789 | 5.6717 |
Stepped groove test specimen | 5.2947 | 5.1296 | 4.6076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Liu, Q.; Li, X.; Li, K.; Cai, Z. The Influence of Groove Geometry on the Creep Fracture Behavior of Dissimilar Metal Welds between Ferritic Heat-Resistant Steels and Nickel-Based Alloys. Metals 2024, 14, 382. https://doi.org/10.3390/met14040382
Zhang T, Liu Q, Li X, Li K, Cai Z. The Influence of Groove Geometry on the Creep Fracture Behavior of Dissimilar Metal Welds between Ferritic Heat-Resistant Steels and Nickel-Based Alloys. Metals. 2024; 14(4):382. https://doi.org/10.3390/met14040382
Chicago/Turabian StyleZhang, Tengfei, Qu Liu, Xiaogang Li, Kejian Li, and Zhipeng Cai. 2024. "The Influence of Groove Geometry on the Creep Fracture Behavior of Dissimilar Metal Welds between Ferritic Heat-Resistant Steels and Nickel-Based Alloys" Metals 14, no. 4: 382. https://doi.org/10.3390/met14040382
APA StyleZhang, T., Liu, Q., Li, X., Li, K., & Cai, Z. (2024). The Influence of Groove Geometry on the Creep Fracture Behavior of Dissimilar Metal Welds between Ferritic Heat-Resistant Steels and Nickel-Based Alloys. Metals, 14(4), 382. https://doi.org/10.3390/met14040382