Materials Design and Development of Photocatalytic NOx Removal Technology
Abstract
:1. Introduction
2. Photocatalytic NOx Removal Mechanism and Chemistry
3. Strategic Approaches for Improving Photocatalysis
4. Materials Design Strategy
4.1. p–n Heterojunction
4.2. Doping, and Defect Engineering
4.3. Microstructure, Crystal Facet, and Morphology Engineering
4.4. Heterojunction
5. Secondary Pollutant Control Strategy
6. Stability Development Approach
7. Comparative Recent Review on Photocatalytic NOx Removal Process
8. Technology Readiness Levels (TRLs)
9. Evaluation Criteria in Field Studies
Materials | Light Source | NOx/NO Removal Performance | Ref. |
---|---|---|---|
BiOI/CeO2 | 300 W Xe lamp (λ > 420 nm) | NO removal rate: 45.5% (30 min in light irradiation) | [47] |
SnO2/CNT * | 300 W Xe lamp (λ > 420 nm) | NO removal efficiency: 9.3%; selectivity: NO-to-green 24.72 | [17] |
CQD *–OVTNs | 500 W Xenon lamp (λ > 420 nm) | NO removal efficiency: 57.8% | [58] |
N-doped TiO2 | LED lamp 6000 lux | NO removal efficiency: 51% (1 h in light irradiation) | [23] |
Au@Ag/TiO2 | 16.8 W LED lamp (λ: 400–700-nm) | NOx removal efficiency: 90% (30 h light irradiation) | [60] |
TiO2–PC * | 300 W Xe lamp, visible light | NOx removal efficiency: 32% (10 min light irradiation) | [67] |
NiTi–LDH/BiOBr | 510 W LED lamp (λ = 420 nm) | NOx removal efficiency: 83–84% | [49] |
Zn2AlEu | 580 W LED lamp (λ = 420 nm) | NO removal efficiency: 47.3% | [56] |
S-doped CN * | 150 W LED lamp (λ > 400 nm) | NO removal rate: 53% | [71] |
Cs3Bi2Br9/g-C3N4 | 300 W Xe lamp (λ > 420 nm) | NO removal rate: 54% | [72] |
PQ–GDY */NH2–UiO–66 (Zr) | 300 W Xe lamp (λ ≥ 420 nm) | NOx removal efficiency: 74% (12 h light irradiation) | [83] |
TiO2/Ti3C2 MXene/CN | 300 W Xe lamp (λ ≥ 420 nm) | NO removal efficiency: 56% (10 min light irradiation) | [77] |
Bi4O5Br2–SnS2 | Visible light | NOx removal efficiency: 33% (15 min light irradiation) | [112] |
ZnCr–LDH | 500 W Xe lamp UV–visible light | NO removal efficiency: 67% (20 min light irradiation) | [113] |
ZnO | 300 W Xe lamp UV–visible light | NO removal efficiency: 55.4% | [113] |
SrTiO3–Ag | Energy saving lamp (λ > 420 nm) | NO removal rate: 70% | [114] |
TiO2/Ca12Al14O33 | 10 W UV light | NO removal 8.5 μmol (300 min) | [115] |
β-Bi2O3/Bi/g-C3N4 | LED lamp | NO removal rate: 88% | [116] |
TiO2/gCN | Cyan light | NO removal efficiency: 37% (30 min light irradiation) | [78] |
SrTiO3/SrCO3 | 300 W Xe lamp | NO degradation rate 44% (10 min light irradiation); reaction rate: 0.078 min−1 | [9] |
CeO2–x/gC3N4–x | 300 W Xe lamp Visible light | NO removal rate 73.8% | [45] |
(Zr/Ti) UiO–66–NH2 | 300 W Xe lamp (λ > 380 nm) | NO removal efficiency 80.7% (12 min light irradiation) | [92] |
TiO/ZnO | Visible light | NOx removal efficiency 70% | [117] |
Ag/ZnO/Zn–Al–LDH | Visible light | NOx removal ratio 80% | [118] |
Bi/BiOBr | 300 W Xe lamp (λ > 420 nm) | NOx removal efficiency 63% | [119] |
Bi2WO6/TiO2 | 1.1 mW (Rayonet UV) λ = 350 nm | 100% inhibited N2O formation | [95] |
Ni–C3N5 | LED light | NO removal ratio 54% (25 min light irradiation) | [13] |
Au/Bi5Ti3FeO15 | Simulated sun light | NO removal efficiency 45% | [76] |
0.5 Ca–CN | LED lamp (λ > 420 nm) | NO removal rate 51.8% | [5] |
Bi12TiO20-TiO2 | 300 W Xe lamp Simulated solar light | NO removal efficiency 42.6% | [11] |
Evaluation Criteria | Comments/Purpose |
---|---|
Laboratory tests | To verify if the product is actually performing as expected. |
Test site area (250 m2) | A larger area provides more reliable results. |
Monitoring distance (0.5–3 m) | The monitoring height should reflect realistic human exposures to assess ambient air quality. |
Reference data | Comparison of test site data with reference data and blank data is necessary to quantify potential changes over time in NOx emissions. Include light-on/light-off data (for tunnels) and day/night measurements. |
Blank data | Blank data should be collected at both the reference site and test site for a similar duration to establish a baseline for comparison. |
Duration of study | The study duration should be long enough to account for fluctuations in NOx levels, meteorological parameters, and seasonal variations (e.g., winter/summer) in the local climate. |
Monitoring frequency | Sampling should be conducted at a frequency sufficient to ensure an adequate number of data points. Ensure that measurements at the test site, reference site, and blank data are taken with a similar time gap. |
Durability testing | Periodic activity testing of photocatalytic active materials in the lab is necessary during the trial study to ensure the product’s potential to remove NOx is maintained. |
Supplementary data | Supplementary data, such as meteorological data and traffic counts, are essential, especially in cases where a reference site is unavailable. |
10. Summary and Future Research Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Li, C.; Mao, J.; Hu, L.; Li, M.; Yun, Y.; Lu, C. Synergistic effect of xSi-TiO2 ceramic membrane on photocatalytic oxidation and water vapor recovery of high humidity NO. Sep. Purif. Technol. 2023, 318, 123928. [Google Scholar] [CrossRef]
- Lux, K.C.; Hot, J.; Fau, P.; Bertron, A.; Kahn, M.L.; Ringot, E.; Fajerwerg, K. Nano-gold decorated ZnO: An alternative photocatalyst promising for NOx degradation. Chem. Eng. Sci. 2023, 267, 118377. [Google Scholar] [CrossRef]
- Shang, H.; Jia, H.; Li, P.; Li, H.; Zhang, W.; Li, S.; Wang, Q.; Xiao, S.; Wang, D.; Li, G.; et al. Highly selective and efficient photocatalytic NO removal: Charge carrier kinetics and interface molecular process. Nano Res. 2023, 17, 1003–1026. [Google Scholar] [CrossRef]
- Park, C.; Cho, M.; Kim, D.-J.; Park, U.-D.; Kwon, Y.-S.; Ju, M.; Kim, S. NOx Removal of Pervious Concrete Pavement Materials with TiO2. Eng. Proc. 2023, 36, 88. [Google Scholar] [CrossRef]
- Li, K.; Zhou, W.; Li, X.; Li, Q.; Carabineiro, S.A.; Zhang, S.; Fan, J.; Lv, K. Synergistic effect of cyano defects and CaCO3 in graphitic carbon nitride nanosheets for efficient visible-light-driven photocatalytic NO removal. J. Hazard. Mater. 2022, 442, 130040. [Google Scholar] [CrossRef]
- Carrasco, S.; Espinosa, E.; González, Z.; Cruz-Yusta, M.; Sánchez, L.; Rodríguez, A. Simple Route to Prepare Composite Nanocellulose Aerogels: A Case of Photocatalytic De-NOx Materials Application. ACS Sustain. Chem. Eng. 2023, 11, 2354–2363. [Google Scholar] [CrossRef]
- Fernández-Pampillón, J.; Palacios, M.; Núñez, L.; Pujadas, M.; Artíñano, B. Potential ambient NO2 abatement by applying photocatalytic materials in a Spanish city and analysis of short-term effect on human mortality. Environ. Pollut. 2023, 323, 121203. [Google Scholar] [CrossRef]
- Kim, H.-J.; Hong, K. Evaluation of Nitrogen Oxide Reduction Performance in Permeable Concrete Surfaces Treated with a TiO2 Photocatalyst. Materials 2023, 16, 5512. [Google Scholar] [CrossRef]
- Han, S.; Li, X.; Tan, Y.; Huang, Y.; Wu, Z.; Wang, M.; Ho, W.; Lee, S.-C. In-situ self-sacrificed fabrication of insulator-based SrTiO3/SrCO3 heterojunction interface for gaseous HCHO and NO photocatalytic degradation. Appl. Surf. Sci. 2023, 612, 155806. [Google Scholar] [CrossRef]
- Zouzelka, R.; Martiniakova, I.; Duchacek, T.; Muzikova, B.; Mikyskova, E.; Rathousky, J. Photocatalytic abatement of air pollutants: Focus on their interference in mixtures. J. Photochem. Photobiol. A Chem. 2023, 434, 114235. [Google Scholar] [CrossRef]
- Liu, H.; Pan, L.; Nie, J.; Mei, H.; Zhu, G.; Jin, Z.; Cheng, L.; Zhang, L. Bi12TiO20-TiO2 S-scheme heterojunction for improved photocatalytic NO removal: Experimental and DFT insights. Sep. Purif. Technol. 2023, 314, 123575. [Google Scholar] [CrossRef]
- Du, D.; Shi, M.; Guo, Q.; Zhang, Y.; Allam, A.A.; Rady, A.; Wang, C. Metal Bi Loaded Bi2Ti2O7/CaTiO3 for Enhanced Photocatalytic Efficiency for NO Removal under Visible Light. Catalysts 2023, 13, 1169. [Google Scholar] [CrossRef]
- Han, L.; Huang, J.; Zhan, J.; Zhang, X.; Wang, S.; Chen, H. Construction of Highly Dispersed Ni Sites on N-rich Carbon Nitride for Enhanced Photocatalytic NO Removal. Adv. Sustain. Syst. 2022, 7, 2200009. [Google Scholar] [CrossRef]
- Everhart, B.M.; McAuley, B.; Al Mayyahi, A.; Tonyali, B.; Yucel, U.; Amama, P.B. Photocatalytic NOx mitigation under relevant conditions using carbon nanotube-modified titania. Chem. Eng. J. 2022, 446, 136984. [Google Scholar] [CrossRef]
- Chang, F.; Wei, Z.; Wang, J.; Zhao, S.; Liu, D.-G. Ultra-stable type-II heterojunctions Bi4O5I2/FeVO4 of reinforced photocatalytic NOx removal abilities in visible light. Mater. Chem. Phys. 2022, 291, 126729. [Google Scholar] [CrossRef]
- Hailili, R.; Ji, H.; Wang, K.; Dong, X.; Chen, C.; Sheng, H.; Bahnemann, D.W.; Zhao, J. ZnO with Controllable Oxygen Vacancies for Photocatalytic Nitrogen Oxide Removal. ACS Catal. 2022, 12, 10004–10017. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Cao, T.M.; Nguyen, T.-T.; Van Pham, V. Improving photocatalytic oxidation of semiconductor (TiO2, SnO2, ZnO)/CNTs for NOx removal. J. Ind. Eng. Chem. 2023, 127, 321–330. [Google Scholar] [CrossRef]
- Kowalkińska, M.; Borzyszkowska, A.F.; Grzegórska, A.; Karczewski, J.; Głuchowski, P.; Łapiński, M.; Sawczak, M.; Zielińska-Jurek, A. Pilot-Scale Studies of WO3/S-Doped g-C3N4 Heterojunction toward Photocatalytic NOx Removal. Materials 2022, 15, 633. [Google Scholar] [CrossRef] [PubMed]
- Van Pham, V.; La, H.P.P.; Le, H.V.; Truong, S.T.; Nguyen, T.Q.; Cao, T.M. Ag/ZnO Heterojunction Decorated on Polypropylene as a Membrane for Photocatalytic Nitrogen Oxide Removal. Ind. Eng. Chem. Res. 2022, 61, 12427–12433. [Google Scholar] [CrossRef]
- Jia, Z.-M.; Zhao, Y.-R.; Shi, J.-N. Adsorption kinetics of the photocatalytic reaction of nano-TiO2 cement-based materials: A review. Constr. Build. Mater. 2023, 370, 130462. [Google Scholar] [CrossRef]
- Bari, G.A.K.M.R.; Jeong, J.-H. Comprehensive Insights and Advancements in Gel Catalysts for Electrochemical Energy Conversion. Gels 2024, 10, 63. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Bari, G.A.R.; Vattikuti, S.; Kim, H. Synthesis of carbon-doped SnO2 nanostructures for visible-light-driven photocatalytic hydrogen production from water splitting. Int. J. Hydrogen Energy 2020, 45, 32789–32796. [Google Scholar] [CrossRef]
- Khan, T.T.; Bari, G.A.K.M.R.; Kang, H.-J.; Lee, T.-G.; Park, J.-W.; Hwang, H.J.; Hossain, S.M.; Mun, J.S.; Suzuki, N.; Fujishima, A.; et al. Synthesis of N-Doped TiO2 for Efficient Photocatalytic Degradation of Atmospheric NOx. Catalysts 2021, 11, 109. [Google Scholar] [CrossRef]
- Lasek, J.A.; Głód, K.; Fryza, R.; Dobras, S.; Chwoła, T.; Supernok, K.; Wu, J.C.-S.; Wu, A.P.-Y.; Huang, C.-W. Experience in Scaling-Up of Photo-Thermo-Catalytic Purification of Process Gasses from NOx. Energies 2023, 16, 5344. [Google Scholar] [CrossRef]
- Clarke, T.M.; Durrant, J.R. Charge Photogeneration in Organic Solar Cells. Chem. Rev. 2010, 110, 6736–6767. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, T.; Chang, X.; Gong, J. Effective Charge Carrier Utilization in Photocatalytic Conversions. Acc. Chem. Res. 2016, 49, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mohamed, H.H.; Dillert, R.; Bahnemann, D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 263–276. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Liu, B.; Chen, M.; Zhou, Y.; Zhu, M. Insights into the role of C-S-C bond in C3N5 for photocatalytic NO deep oxidation: Experimental and DFT exploration. Appl. Catal. B Environ. 2023, 328, 122522. [Google Scholar] [CrossRef]
- Van Pham, V.; Tran, H.H.; Cao, T.M. V2O5 Nanorod-Loaded g-C3N4 Sheets for Efficient Photocatalytic Removal of NO and Minimal NO2 Yield under Visible Light. Energy Fuels 2023, 37, 13241–13249. [Google Scholar] [CrossRef]
- Song, X.; Li, A.; Cai, Z.; Chen, X.; Dai, W.; Fu, X. Synthesis of CdS QDs/BaSnO3 nanocomposites via electrostatic self-assembly for visible light photocatalytic deep oxidation of NO. Appl. Surf. Sci. 2023, 623, 157004. [Google Scholar] [CrossRef]
- Zhu, L.; Yuan, L.; Xu, X.; Chen, J.; Yang, L. The Preparation of Photocatalytic Porous Magnesium Oxychloride Cement-Based Materials and Its De-NOx Performance. Catalysts 2023, 13, 326. [Google Scholar] [CrossRef]
- Kuk, S.K.; Ji, S.M.; Kang, S.; Yang, D.S.; Kwon, H.J.; Koo, M.S.; Oh, S.; Lee, H.C. Singlet-oxygen-driven photocatalytic degradation of gaseous formaldehyde and its mechanistic study. Appl. Catal. B Environ. 2023, 328, 122463. [Google Scholar] [CrossRef]
- Li, X.; Dong, Q.; Li, F.; Zhu, Q.; Tian, Q.; Tian, L.; Zhu, Y.; Pan, B.; Padervand, M.; Wang, C. Defective Bi@BiOBr/C microrods derived from Bi-MOF for efficient photocatalytic NO abatement: Directional regulation of interfacial charge transfer via carbon–loading. Appl. Catal. B Environ. 2024, 340, 123238. [Google Scholar] [CrossRef]
- Ma, C.; Wei, J.; Jiang, K.; Chen, J.; Yang, Z.; Yang, X.; Yu, G.; Zhang, C.; Li, X. Typical layered structure bismuth-based photocatalysts for photocatalytic nitrogen oxides oxidation. Sci. Total Environ. 2023, 855, 158644. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Xie, C.; Xu, B.; Ji, X.; Gao, G.; Yang, P. Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J. Ind. Eng. Chem. 2022, 105, 303–312. [Google Scholar] [CrossRef]
- Gao, T.; Lin, J.; Zhang, K.; Padervand, M.; Zhang, Y.; Zhang, W.; Shi, M.; Wang, C. Porous Defective Bi/Bi3NbO7 Nanosheets for Efficient Photocatalytic NO Removal under Visible Light. Processes 2022, 11, 115. [Google Scholar] [CrossRef]
- Fragoso, J.; Pastor, A.; Cruz-Yusta, M.; Martin, F.; de Miguel, G.; Pavlovic, I.; Sánchez, M.; Sánchez, L. Graphene quantum dots/NiTi layered double hydroxide heterojunction as a highly efficient De-NOx photocatalyst with long persistent post-illumination action. Appl. Catal. B Environ. 2023, 322, 122115. [Google Scholar] [CrossRef]
- Li, G.; Lian, Z.; Wan, Z.; Liu, Z.; Qian, J.; Deng, Y.; Zhang, S.; Zhong, Q. Efficient photothermal-assisted photocatalytic NO removal on molecular cobalt phthalocyanine/Bi2WO6 Z-scheme heterojunctions by promoting charge transfer and oxygen activation. Appl. Catal. B Environ. 2022, 317, 121787. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. Chem 2020, 6, 1543–1559. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, C.; Wu, H.; Shi, Y.; Chen, C.; Zhou, X. Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study. Materials 2022, 15, 3786. [Google Scholar] [CrossRef]
- Rhimi, B.; Wang, C.; Bahnemann, D.W. Latest progress in g-C3N4 based heterojunctions for hydrogen production via photocatalytic water splitting: A mini review. J. Phys. Energy 2020, 2, 042003. [Google Scholar] [CrossRef]
- Fernández-Catalá, J.; Greco, R.; Navlani-García, M.; Cao, W.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. g-C3N4-Based Direct Z-Scheme Photocatalysts for Environmental Applications. Catalysts 2022, 12, 1137. [Google Scholar] [CrossRef]
- Schumacher, L.; Marschall, R. Recent Advances in Semiconductor Heterojunctions and Z-Schemes for Photocatalytic Hydrogen Generation; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 380. [Google Scholar] [CrossRef]
- Han, H.; Wang, X.; Qiao, Y.; Lai, Y.; Liu, B.; Zhang, Y.; Luo, J.; Toan, S.; Wang, L. Construction of S-scheme heterojunction for enhanced photocatalytic conversation of NO over dual-defect CeO2−x/g-C3N4−x. J. Alloys Compd. 2023, 933, 167819. [Google Scholar] [CrossRef]
- Rao, F.; Zhu, G.; Hojamberdiev, M.; Zhang, W.; Li, S.; Gao, J.; Zhang, F.; Huang, Y.; Huang, Y. Uniform Zn2+-Doped BiOI Microspheres Assembled by Ultrathin Nanosheets with Tunable Oxygen Vacancies for Super-Stable Removal of NO. J. Phys. Chem. C 2019, 123, 16268–16280. [Google Scholar] [CrossRef]
- Cao, B.; He, D.; Rao, F.; Hassan, Q.U.; Cai, X.; Liu, L.; Xue, F.; Zhu, G. Constructing BiOI/CeO2 p-n heterojunction with enhanced NOx photo-oxidative removal under visible light irradiation. J. Alloys Compd. 2023, 934, 167962. [Google Scholar] [CrossRef]
- Gong, H.; Li, Y.; Li, H.; Jin, Z. 2D CeO2 and a Partially Phosphated 2D Ni-Based Metal–Organic Framework Formed an S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Langmuir 2022, 38, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.; Ortiz-Bustos, J.; Cruz-Yusta, M.; Martin, F.; del Hierro, I.; Pérez, Y.; Pavlovic, I.; Sánchez, L. 2D/2D NiTi-LDH/BiOBr photocatalyst with extraordinary NOx removal under visible light. Chem. Eng. J. 2023, 470, 144088. [Google Scholar] [CrossRef]
- Mochane, M.J.; Magagula, S.I.; Sefadi, J.S.; Sadiku, E.R.; Mokhena, T.C. Morphology, Thermal Stability, and Flammability Properties of Polymer-Layered Double Hydroxide (LDH) Nanocomposites: A Review. Crystals 2020, 10, 612. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Dong, F. Visible-Light Photocatalytic Removal of NO in Air over BiOX (X = Cl, Br, I) Single-Crystal Nanoplates Prepared at Room Temperature. Ind. Eng. Chem. Res. 2013, 52, 6740–6746. [Google Scholar] [CrossRef]
- Ye, L.; Jin, X.; Liu, C.; Ding, C.; Xie, H.; Chu, K.H.; Wong, P.K. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B Environ. 2016, 187, 281–290. [Google Scholar] [CrossRef]
- Sharma, K.; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, P.; Singh, P. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review. J. Ind. Eng. Chem. 2019, 78, 1–20. [Google Scholar] [CrossRef]
- Juan, J.L.X.; Maldonado, C.S.; Sánchez, R.A.L.; Díaz, O.J.E.; Ronquillo, M.R.R.; Sandoval-Rangel, L.; Aguilar, N.P.; Delgado, N.A.R.; Martínez-Vargas, D.X. TiO2 doped with europium (Eu): Synthesis, characterization and catalytic performance on pesticide degradation under solar irradiation. Catal. Today 2021, 394–396, 304–313. [Google Scholar] [CrossRef]
- Cerrato, E.; Gaggero, E.; Calza, P.; Paganini, M.C. The role of Cerium, Europium and Erbium doped TiO2 photocatalysts in water treatment: A mini-review. Chem. Eng. J. Adv. 2022, 10, 100268. [Google Scholar] [CrossRef]
- Pastor, A.; Chen, C.; de Miguel, G.; Martín, F.; Cruz-Yusta, M.; O’Hare, D.; Pavlovic, I.; Sánchez, L. Facile synthesis of visible-responsive photocatalytic Eu-doped layered double hydroxide for selective removal of NOx pollutant. Chem. Eng. J. 2023, 471, 144464. [Google Scholar] [CrossRef]
- Han, R.; Zhou, R.; O’Rourke, C.; Mills, A. 3D printed photocatalytic reactor for air purification. J. Photochem. Photobiol. A Chem. 2023, 443, 114843. [Google Scholar] [CrossRef]
- Li, F.; Liu, G.; Liu, F.; Wu, J.; Yang, S. Synergetic effect of CQD and oxygen vacancy to TiO2 photocatalyst for boosting visible photocatalytic NO removal. J. Hazard. Mater. 2023, 452, 131237. [Google Scholar] [CrossRef]
- Stucchi, M.; Meroni, D.; Safran, G.; Villa, A.; Bianchi, C.L.; Prati, L. Noble Metal Promoted TiO2 from Silver-Waste Valorisation: Synergism between Ag and Au. Catalysts 2022, 12, 235. [Google Scholar] [CrossRef]
- Haghshenas, N.; Falletta, E.; Cerrato, G.; Giordana, A.; Bianchi, C.L. Tuning the visible-light-driven photocatalytic properties of multi-decorated TiO2 by noble metals towards both propionic acid and NOx degradation. Catal. Commun. 2023, 181, 106728. [Google Scholar] [CrossRef]
- Luna, M.; Gatica, J.M.; Vidal, H.; Mosquera, M.J. One-pot synthesis of Au/N-TiO2 photocatalysts for environmental applications: Enhancement of dyes and NOx photodegradation. Powder Technol. 2019, 355, 793–807. [Google Scholar] [CrossRef]
- Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J. Phys. Chem. B 2003, 107, 5483–5486. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Xu, Q.; Chen, W.; Dong, Y.; Fan, J.; Ma, D. Recent Advances in Opal/Inverted Opal Photonic Crystal Photocatalysts. Sol. RRL 2020, 5, 2000541. [Google Scholar] [CrossRef]
- Lim, S.Y.; Hedrich, C.; Jiang, L.; Law, C.S.; Chirumamilla, M.; Abell, A.D.; Blick, R.H.; Zierold, R.; Santos, A. Harnessing Slow Light in Optoelectronically Engineered Nanoporous Photonic Crystals for Visible Light-Enhanced Photocatalysis. ACS Catal. 2021, 11, 12947–12962. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, L. Photonic nanostructures for solar energy conversion. Energy Environ. Sci. 2016, 9, 2511–2532. [Google Scholar] [CrossRef]
- Likodimos, V. Photonic crystal-assisted visible light activated TiO2 photocatalysis. Appl. Catal. B Environ. 2018, 230, 269–303. [Google Scholar] [CrossRef]
- Bu, Y.; Wang, B.; Yue, M.; Ren, Q.; Guo, L.; Fu, Y. Photocatalytic NO removal based on TiO2 photonic crystals through slow photon effect. Mater. Lett. 2023, 346, 134537. [Google Scholar] [CrossRef]
- Lee, T.-G.; Kang, H.-J.; Bari, G.A.R.; Park, J.-W.; Seo, H.-W.; An, B.-H.; Hwang, H.J.; Jun, Y.-S. Macroscopic graphitic carbon nitride monolith for efficient hydrogen production by photocatalytic reforming of glucose under sunlight. Chemosphere 2021, 283, 131174. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-J.; Lee, T.-G.; Bari, G.A.K.M.R.; Seo, H.-W.; Park, J.-W.; Hwang, H.J.; An, B.-H.; Suzuki, N.; Fujishima, A.; Kim, J.-H.; et al. Sulfuric Acid Treated g-CN as a Precursor to Generate High-Efficient g-CN for Hydrogen Evolution from Water under Visible Light Irradiation. Catalysts 2020, 11, 37. [Google Scholar] [CrossRef]
- Moon, H.S.; Hsiao, K.; Wu, M.; Yun, Y.; Hsu, Y.; Yong, K. Spatial Separation of Cocatalysts on Z-Scheme Organic/Inorganic Heterostructure Hollow Spheres for Enhanced Photocatalytic H2 Evolution and In-Depth Analysis of the Charge-Transfer Mechanism. Adv. Mater. 2022, 35, 2200172. [Google Scholar] [CrossRef]
- Qi, Z.; Chen, J.; Zhou, W.; Li, Y.; Li, X.; Zhang, S.; Fan, J.; Lv, K. Synergistic effects of holey nanosheet and sulfur-doping on the photocatalytic activity of carbon nitride towards NO removal. Chemosphere 2023, 316, 137813. [Google Scholar] [CrossRef]
- Xie, B.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Lu, J. Lead-Free Cs3Bi2Br9 perovskite in-situ growth on 3D Flower-like g-C3N4 microspheres to improve photocatalytic performance. Chem. Eng. J. 2023, 452, 139662. [Google Scholar] [CrossRef]
- Dong, F.; Wang, Z.; Sun, Y.; Ho, W.-K.; Zhang, H. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci. 2013, 401, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Jacobs, D.L.; Zang, L.; Wang, C. Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets. Appl. Catal. B Environ. 2017, 218, 515–524. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, R.; Lin, J.; Zhu, Y. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 2011, 4, 2922–2929. [Google Scholar] [CrossRef]
- Guo, Y.; Ou, Y.; Rao, F.; Zhang, W.; Sun, J.; Yang, Y.; Yang, X.; Wang, C.; Wang, J. Au Nanoparticles Loaded Bi5Ti3FeO15 Ferroelectric Nanosheets with Enhanced Photocatalytic Activity for NO Removal. Catal. Lett. 2022, 153, 1861–1870. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Lu, J. Ti3C2 MXene-induced interface charge transferred in Z-scheme heterojunction for efficient photocatalytic removal of nitric oxide. J. Alloys Compd. 2023, 960, 170830. [Google Scholar] [CrossRef]
- Al Mayyahi, A.; Sekar, A.; Rajendran, S.; Sigdel, S.; Lu, L.; Wang, J.; Wang, G.; Li, J.; Amama, P.B. Hierarchical TiO2-g-C3N4 photocatalyst with purification effect for NOx oxidation under cyan light. J. Photochem. Photobiol. A Chem. 2023, 444, 114965. [Google Scholar] [CrossRef]
- Gao, L.; Ge, X.; Zuo, Z.; Wang, F.; Liu, X.; Lv, M.; Shi, S.; Xu, L.; Liu, T.; Zhou, Q.; et al. High Quality Pyrazinoquinoxaline-Based Graphdiyne for Efficient Gradient Storage of Lithium Ions. Nano Lett. 2020, 20, 7333–7341. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, Q.; Yang, C.; Chen, Y.; Dai, Z.; Yao, B.; Zhang, X.; Cui, X. Ternary TiO2/MoSe2/γ-graphyne heterojunctions with enhanced photocatalytic hydrogen evolution. J. Mater. Sci. Mater. Electron. 2020, 31, 8796–8804. [Google Scholar] [CrossRef]
- Gao, X.; Li, J.; Du, R.; Zhou, J.; Huang, M.; Liu, R.; Li, J.; Xie, Z.; Wu, L.; Liu, Z.; et al. Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell. Adv. Mater. 2016, 29, 1605308. [Google Scholar] [CrossRef]
- Li, X.; Le, Z.; Chen, X.; Li, Z.; Wang, W.; Liu, X.; Wu, A.; Xu, P.; Zhang, D. Graphene oxide enhanced amine-functionalized titanium metal organic framework for visible-light-driven photocatalytic oxidation of gaseous pollutants. Appl. Catal. B Environ. 2018, 236, 501–508. [Google Scholar] [CrossRef]
- Yang, Q.; Li, S.; Liang, R.; Gao, L.; Zhang, S.; Jia, J.; Liu, Y.; Lyv, R.; Li, G.; Xiao, S.; et al. Microwave assisted synthesis of PQ-GDY@NH2-UIO-66(Zr) for improved photocatalytic removal of NO under visible light. J. Environ. Sci. 2023, 134, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yu, Y.; Yi, Z. Controllable synthesis of SrCO3 with different morphologies and their co-catalytic activities for photocatalytic oxidation of hydrocarbon gases over TiO2. J. Mater. Sci. 2017, 52, 5106–5116. [Google Scholar] [CrossRef]
- Kobayashi, M.; Suzuki, Y.; Goto, T.; Cho, S.H.; Sekino, T.; Asakura, Y.; Yin, S. Low-temperature hydrothermal synthesis and characterization of SrTiO3 photocatalysts for NOx degradation. J. Ceram. Soc. Jpn. 2018, 126, 135–138. [Google Scholar] [CrossRef]
- Hodjati, S.; Vaezzadeh, K.; Petit, C.; Pitchon, V.; Kiennemann, A. Absorption/desorption of NOx process on perovskites: Performances to remove NOx from a lean exhaust gas. Appl. Catal. B Environ. 2000, 26, 5–16. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, C.; Huang, D.; Wang, W.; Zhai, Y.; Liang, Q.; Yang, Y.; Tian, S.; Luo, H.; Qin, D. Structure defined 2D Mo2C/2Dg-C3N4 Van der Waals heterojunction: Oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic degradation of pharmaceutical and personal care products. Appl. Catal. B Environ. 2021, 301, 120749. [Google Scholar] [CrossRef]
- Van Pham, V.; Mai, D.-Q.; Bui, D.-P.; Van Man, T.; Zhu, B.; Zhang, L.; Sangkaworn, J.; Tantirungrotechai, J.; Reutrakul, V.; Cao, T.M. Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation. Environ. Pollut. 2021, 286, 117510. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P. Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Liu, L.; Nie, Q.; Tan, Z.; Yu, H. New insights into the removal of nitric oxide using UiO-66-NH2: Synergistic photooxidation and subsequent adsorption. J. Environ. Chem. Eng. 2022, 10, 108294. [Google Scholar] [CrossRef]
- Xia, T.; Cai, J.; Wang, H.; Duan, X.; Cui, Y.; Yang, Y.; Qian, G. Microporous metal-organic frameworks with suitable pore spaces for acetylene storage and purification. Microporous Mesoporous Mater. 2015, 215, 109–115. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Jia, L.; Liu, L.; Nie, Q.; Tan, Z.; Yu, H. Microwave-Assisted Rapid Substitution of Ti for Zr to Produce Bimetallic (Zr/Ti)UiO-66-NH2 with Congenetic “Shell–Core” Structure for Enhancing Photocatalytic Removal of Nitric Oxide. Small 2023, 19, e2207198. [Google Scholar] [CrossRef]
- Le Vaillant, F.; Calbet, A.M.; González-Pelayo, S.; Reijerse, E.J.; Ni, S.; Busch, J.; Cornella, J. Catalytic synthesis of phenols with nitrous oxide. Nature 2022, 604, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Babbin, A.R.; Bianchi, D.; Jayakumar, A.; Ward, B.B. Rapid nitrous oxide cycling in the suboxic ocean. Science 2015, 348, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Wang, M.; Liao, L.; Hu, W.; Liu, Z.; Liu, Z.; Guo, L.; Li, K.; Cui, Y.; Lin, F.; et al. 100% N2O inhibition in photocatalytic NOx reduction by carbon particles over Bi2WO6/TiO2 Z-scheme heterojunctions. Chem. Eng. J. 2023, 453, 139892. [Google Scholar] [CrossRef]
- Li, F.; Liu, G.; Liu, F.; Yang, S. A WO3–TiO2 nanorod/CaCO3 photocatalyst with degradation-regeneration double sites for NO2-inhibited and durable photocatalytic NO. Chemosphere 2023, 324, 138277. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Saad, E.; Zhang, W.; Tang, Y.; Kurtis, K. Quantification of NOx uptake in plain and TiO2-doped cementitious materials. Cem. Concr. Res. 2019, 122, 251–256. [Google Scholar] [CrossRef]
- Shi, X.; Wang, P.; Li, W.; Bai, Y.; Xie, H.; Zhou, Y.; Ye, L. Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3– adsorption. Appl. Catal. B Environ. 2018, 243, 322–329. [Google Scholar] [CrossRef]
- Khan, M.; Khan, M.S.A.; Borah, K.K.; Goswami, Y.; Hakeem, K.R.; Chakrabartty, I. The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review. Environ. Adv. 2021, 6, 100128. [Google Scholar] [CrossRef]
- Tan, X.; Qin, G.; Cheng, G.; Song, X.; Chen, X.; Dai, W.; Fu, X. Oxygen vacancies enhance photocatalytic removal of NO over an N-doped TiO2 catalyst. Catal. Sci. Technol. 2020, 10, 6923–6934. [Google Scholar] [CrossRef]
- Cervantes-Avilés, P.; Ida, J.; Toda, T.; Cuevas-Rodríguez, G. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge. J. Environ. Manag. 2018, 222, 227–233. [Google Scholar] [CrossRef]
- Liu, B.; Huang, H.; Xiao, Z.; Yang, J.; Zhu, M. 2D/3D g-C3N4/BiOI heterostructure catalyst for efficient and robust photocatalytic NO removal. Sep. Purif. Technol. 2023, 310, 123183. [Google Scholar] [CrossRef]
- Liu, Z.; An, Y.; Zhang, W.; Zhu, L.; Zhu, G. Au nanoparticles modified oxygen-vacancies-rich Bi4Ti3O12 heterojunction for efficient photocatalytic NO removal with high selectivity. J. Alloys Compd. 2023, 942, 169018. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Q.; Li, X.; Zhang, G.; Liu, Y.; Tang, S.; Sharman, E.; Jiang, J.; Luo, Y. Combining High Photocatalytic Activity and Stability via Subsurface Defects in TiO2. J. Phys. Chem. C 2018, 122, 17221–17227. [Google Scholar] [CrossRef]
- Ji, Y.; Luo, Y. New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy. J. Am. Chem. Soc. 2016, 138, 15896–15902. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rana, S.; Wang, T.; Dhiman, P.; Sharma, G.; Du, B.; Stadler, F.J. Advances in S-scheme heterojunction semiconductor photocatalysts for CO2 reduction, nitrogen fixation and NOx degradation. Mater. Sci. Semicond. Process. 2023, 168, 107869. [Google Scholar] [CrossRef]
- Sharma, J.; Dhiman, P.; Kumar, A.; Sharma, G. Advances in photocatalytic NO oxidation by Z-scheme heterojunctions. Environ. Res. 2024, 240, 117431. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Adalder, A.; Ghorai, U.K. Progress of electrocatalytic urea synthesis: Strategic design, reactor engineering, mechanistic details and techno-commercial study. Mater. Chem. Front. 2023, 7, 3820–3854. [Google Scholar] [CrossRef]
- Pedersen, P.D.; Lock, N.; Jensen, H. Removing NOx Pollution by Photocatalytic Building Materials in Real- Life: Evaluation of Existing Field Studies. J. Photocatal. 2021, 2, 84–96. [Google Scholar] [CrossRef]
- Baudys, M.; Andrews, R.; Han, R.; O’rourke, C.; Hodgen, S.; Krysa, J.; Mills, A. Photocatalytic paints for NOx removal: Influence of various weathering conditions. J. Environ. Chem. Eng. 2021, 9, 106172. [Google Scholar] [CrossRef]
- Yu, Q.; Hendrix, Y.; Lorencik, S.; Brouwers, H. Field study of NOx degradation by a mineral-based air purifying paint. J. Affect. Disord. 2018, 142, 70–82. [Google Scholar] [CrossRef]
- Chang, F.; Wei, Z.; Zhao, Z.; Qi, Y.; Liu, D.-G. 2D-2D heterostructured composites Bi4O5Br2-SnS2 with boosted photocatalytic NOx abatement. J. Ind. Eng. Chem. 2023, 117, 265–272. [Google Scholar] [CrossRef]
- Fragoso, J.; Balbuena, J.; Cruz-Yusta, M.; Pavlovic, I.; Sánchez, M.; Sánchez, L. Implementing the use of layered double hydroxides as photocatalytic additive for DeNOx building mortars: ZnCr-CO3 a case of study. Constr. Build. Mater. 2023, 394, 132241. [Google Scholar] [CrossRef]
- Ma, H.; Yang, W.; Tang, H.; Pan, Y.; Li, W.; Fang, R.; Shen, Y.; Dong, F. Enhance the stability of oxygen vacancies in SrTiO3 via metallic Ag modification for efficient and durable photocatalytic NO abatement. J. Hazard. Mater. 2023, 452, 131269. [Google Scholar] [CrossRef]
- Park, J.H.; Hong, M.W.; Oo, W.; Park, J.J.; Park, H.J.; Yi, K.B. Enhanced photocatalytic activity of TiO2/Ca12Al14O33 in NO removal. Korean J. Chem. Eng. 2023, 40, 2906–2913. [Google Scholar] [CrossRef]
- Qin, X.; Tan, H.; Zhao, Y.; Cheng, S.; Zhou, M.; Lin, J.; Ho, W.-K.; Li, H.; Lee, S.-C. Light-Emitting Diode Visible-Light-Driven Photocatalytic Redox Reactions in Nitrogen Oxide Removal Using β-Bi2O3/Bi/g-C3N4 Prepared by One-Step In Situ Thermal Reduction Synthesis. Adv. Energy Sustain. Res. 2022, 4, 2200157. [Google Scholar] [CrossRef]
- Sanito, R.C.; Hussain, A.; You, S.-J.; Lin, C.; Wang, Y.-F. Bone powder decorated TiO2 and ZnO nanoparticles: The first investigation of NOx degradation by solar light and visible light-driven photocatalyst. Mater. Chem. Phys. 2023, 302, 127707. [Google Scholar] [CrossRef]
- Tang, H.; Luo, X.; Li, W.; Pan, Y.; Wang, S.; Ma, H.; Shen, Y.; Fang, R.; Dong, F. Highly active Ag/ZnO/ZnAl-LDH heterojunction photocatalysts for NO removal. Chem. Eng. J. 2023, 474, 145873. [Google Scholar] [CrossRef]
- Xin, Y.; Zhu, Q.; Gao, T.; Li, X.; Zhang, W.; Wang, H.; Ji, D.; Huang, Y.; Padervand, M.; Yu, F.; et al. Photocatalytic NO removal over defective Bi/BiOBr nanoflowers: The inhibition of toxic NO2 intermediate via high humidity. Appl. Catal. B Environ. 2023, 324, 122238. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bari, G.A.K.M.R.; Islam, M.; Jeong, J.-H. Materials Design and Development of Photocatalytic NOx Removal Technology. Metals 2024, 14, 423. https://doi.org/10.3390/met14040423
Bari GAKMR, Islam M, Jeong J-H. Materials Design and Development of Photocatalytic NOx Removal Technology. Metals. 2024; 14(4):423. https://doi.org/10.3390/met14040423
Chicago/Turabian StyleBari, Gazi A. K. M. Rafiqul, Mobinul Islam, and Jae-Ho Jeong. 2024. "Materials Design and Development of Photocatalytic NOx Removal Technology" Metals 14, no. 4: 423. https://doi.org/10.3390/met14040423
APA StyleBari, G. A. K. M. R., Islam, M., & Jeong, J. -H. (2024). Materials Design and Development of Photocatalytic NOx Removal Technology. Metals, 14(4), 423. https://doi.org/10.3390/met14040423