Long-Term Oxidation Studies on Porous Stainless Steel 430L Substrate Relevant to Its Application in Metal-Supported SOFC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection and Preparation
2.2. Oxidation Experiment
2.3. Characterization
3. Results and Discussion
3.1. Morphology of Original Porous 430L Substrate
3.2. Oxidation Kinetics Analysis
3.3. XRD Spectral Analysis
3.4. Micromorphology Analysis
3.5. Oxide Thickness and Substrate Life Analysis
4. Conclusions
- 1.
- The oxidation kinetics of the porous substrate under a dry air atmosphere at 800 °C exhibited two stages. The first stage was a surface reaction, which occurred relatively rapidly with a reaction rate of 2.58 × 10−2 % h−1. The second stage conformed to Wagner’s parabolic oxidation law as a whole, with the oxidation rate decreasing markedly compared to that of the first phase (K2 = 3.66 × 10−3 %2 h−1) and was controlled by ion diffusion.
- 2.
- SEM and EDS analyses indicated that as the oxidation time increased, the layering of the oxide scale gradually became clear. The protective Cr2O3 scale was formed first on the outside of the substrate, followed by FeCr2O4 and MnCr2O4 spinel on the outside of the chromium scale, and Fe-rich oxides on the outermost layer of the substrate. After 1500 h of oxidation, the oxide scale exhibited localized cracking and flaking. A large area of breakaway oxidation also appeared, indicating that the porous alloy is no longer suitable as a symmetric cell support skeleton.
- 3.
- The thickness of the oxide scale gradually increased over time, but it appeared to be unevenly oxidized in different areas of the substrate. After 6, 300, 950, and 1500 h, the average thickness of the oxide scale reached 0.81, 3.35, 4.71, and 5.42 μm, respectively. Notably, no breakaway oxidation occurred even when the thickness of the oxide scale reached the threshold of 3 μm. Furthermore, the measured data showed that the porous 430L substrate can be used for about 1500 h under dry air conditions on a suggested basis of 3 wt.% weight gain, which is sufficiently long for certain mobile applications of metal-supported SOFC.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thanedburapasup, S.; Wetchirarat, N.; Muengjai, A.; Tengprasert, W.; Wiman, P.; Thublaor, T.; Uawongsuwan, P.; Siripongsakul, T.; Chandra-Ambhorn, S. Fabrication of Mn–Co Alloys Electrodeposited on AISI 430 Ferritic Stainless Steel for SOFC Interconnect Applications. Metals 2023, 13, 612. [Google Scholar] [CrossRef]
- Singh, M.; Zappa, D.; Comini, E. Solid oxide fuel cell: Decade of progress, future perspectives and challenges. Int. J. Hydrog. Energy 2021, 46, 27643–27674. [Google Scholar] [CrossRef]
- Irshad, M.; Rafique, M.; Tabish, A.N.; Ghaffar, A.; Shakeel, A.; Siraj, K.; Ain, Q.u.; Raza, R.; Assiri, M.A.; Imran, M. Influence of Sintering Temperature on the Structural, Morphological, and Electrochemical Properties of NiO-YSZ Anode Synthesized by the Autocombustion Route. Metals 2022, 12, 219. [Google Scholar] [CrossRef]
- Tucker, M.C. Development of High Power Density Metal-Supported Solid Oxide Fuel Cells. Energy Technol. 2017, 5, 2175–2181. [Google Scholar] [CrossRef]
- Opakhai, S.; Kuterbekov, K. Metal-Supported Solid Oxide Fuel Cells: A Review of Recent Developments and Problems. Energies 2023, 16, 4700. [Google Scholar] [CrossRef]
- Golkhatmi, S.Z.; Asghar, M.I.; Lund, P.D. A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renew. Sustain. Energy Rev. 2022, 161, 112339. [Google Scholar] [CrossRef]
- Dogdibegovic, E.; Fukuyama, Y.; Tucker, M.C. Ethanol internal reforming in solid oxide fuel cells: A path toward high performance metal-supported cells for vehicular applications. J. Power Sources 2020, 449, 227598. [Google Scholar] [CrossRef]
- Dogdibegovic, E.; Wang, R.; Lau, G.Y.; Karimaghaloo, A.; Lee, M.H.; Tucker, M.C. Progress in durability of metal-supported solid oxide fuel cells with infiltrated electrodes. J. Power Sources 2019, 437, 226935. [Google Scholar] [CrossRef]
- Dogdibegovic, E.; Cheng, Y.; Shen, F.; Wang, R.; Hu, B.; Tucker, M.C. Scaleup and manufacturability of symmetric-structured metal-supported solid oxide fuel cells. J. Power Sources 2021, 489, 229439. [Google Scholar] [CrossRef]
- Dogdibegovic, E.; Wang, R.; Lau, G.Y.; Tucker, M.C. High performance metal-supported solid oxide fuel cells with infiltrated electrodes. J. Power Sources 2018, 410–411, 91–98. [Google Scholar] [CrossRef]
- Tucker, M.C.; Carreon, B.; Charyasatit, J.; Langston, K.; Taylor, C.; Manjarrez, J.; Burton, N.; LaBarbera, M.; Jacobson, C.P. R&D and Commercialization of Metal-Supported SOFC Personal Power Products at Point Source Power. In Proceedings of the 13th International Symposium on Solid Oxide Fuel Cells (SOFC-XIII), Okinawa, Japan, 6–11 October 2013; pp. 503–509. [Google Scholar]
- Zhou, Z.; Nadimpalli, V.K.; Pedersen, D.B.; Esposito, V. Degradation Mechanisms of Metal-Supported Solid Oxide Cells and Countermeasures: A Review. Materials 2021, 14, 3139. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sang, J.; Yang, J.; Zhang, Y.; Han, B.; Liu, H.; Bao, S.; Lin, W.; Guan, W. Oxidation behaviors of the Sr2Fe1.5Mo0.5O6-δ-coated SUS430 metal interconnect in anode atmosphere for direct methanol solid oxide fuel cells. Int. J. Hydrog. Energy 2024, 56, 199–206. [Google Scholar] [CrossRef]
- Chen, P.; Yang, J.; Wang, P.; Xu, D.; Tai, Y.; Cheng, J. The suitability performance of Sr2Fe1.5Mo0.5O6-δ-coated SUS430 for SOFC interconnect application. Chem. Phys. Lett. 2022, 807, 140082. [Google Scholar] [CrossRef]
- Bongiorno, V.; Spotorno, R.; Paravidino, D.; Piccardo, P. On the High-Temperature Oxidation and Area Specific Resistance of New Commercial Ferritic Stainless Steels. Metals 2021, 11, 405. [Google Scholar] [CrossRef]
- García, I.C.; Galindo, A.N.; Bello, J.F.A.; Leal, J.M.G.; Pedemonte, J.F.B. Characterisation of High Temperature Oxidation Phenomena during AISI 430 Stainless Steel Manufacturing under a Controlled H2 Atmosphere for Bright Annealing. Metals 2021, 11, 191. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Q.; Zhang, W.; Xie, Z.; Shang, C. Investigation on the Correlation between Inclusions and High Temperature Urea Corrosion Behavior in Ferritic Stainless Steel. Metals 2021, 11, 1823. [Google Scholar] [CrossRef]
- Huczkowski, P.; Christiansen, N.; Shemet, V.; Piron-Abellan, J.; Singheiser, L.; Quadakkers, W.J. Oxidation induced lifetime limits of chromia forming ferritic interconnector steels. J. Fuel Cell Sci. Technol. 2004, 1, 30–34. [Google Scholar] [CrossRef]
- Huczkowski, P.; Shemet, V.; Piron-Abellan, J.; Singheiser, L.; Quadakkers, W.J.; Christiansen, N. Oxidation limited life times of chromia forming ferritic steels. Mater. Corros. 2004, 55, 825–830. [Google Scholar] [CrossRef]
- Koszelow, D.; Makowska, M.; Marone, F.; Karczewski, J.; Jasiński, P.; Molin, S. High temperature corrosion evaluation and lifetime prediction of porous Fe22Cr stainless steel in air in temperature range 700–900 °C. Corros. Sci. 2021, 189, 109589. [Google Scholar] [CrossRef]
- Boccaccini, D.N.; Frandsen, H.L.; Sudireddy, B.R.; Blennow, P.; Persson, Å.H.; Kwok, K.; Hendriksen, P.V. Creep behaviour of porous metal supports for solid oxide fuel cells. Int. J. Hydrog. Energy 2014, 39, 21569–21580. [Google Scholar] [CrossRef]
- Mokhtari, M.; Wada, T.; Le Bourlot, C.; Duchet-Rumeau, J.; Kato, H.; Maire, E.; Mary, N. Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800. Corros. Sci. 2020, 166, 108468. [Google Scholar] [CrossRef]
- Stefan, E.; Denonville, C.; Larring, Y.; Stange, M.; Haugsrud, R. Oxidation study of porous metal substrates for metal supported proton ceramic electrolyzer cells. Corros. Sci. 2020, 164, 108335. [Google Scholar] [CrossRef]
- Molin, S.; Kusz, B.; Gazda, M.; Jasinski, P. Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures. J. Power Sources 2008, 181, 31–37. [Google Scholar] [CrossRef]
- Reisert, M.; Berova, V.; Aphale, A.; Singh, P.; Tucker, M.C. Oxidation of porous stainless steel supports for metal-supported solid oxide fuel cells. Int. J. Hydrog. Energy 2020, 45, 30882–30897. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Li, C.-X.; Li, C.-J.; Liu, M.; Yang, G.-J. Investigation into the diffusion and oxidation behavior of the interface between a plasma-sprayed anode and a porous steel support for solid oxide fuel cells. J. Power Sources 2016, 323, 1–7. [Google Scholar] [CrossRef]
- Sarasketa-Zabala, E.; Otaegi, L.; Rodriguez-Martinez, L.M.; Alvarez, M.A.; Burgos, N.; Castro, F.; Villarreal, I. High temperature stability of porous metal substrates under highly humidified hydrogen conditions for metal supported Solid Oxide Fuel Cells. Solid State Ionics 2012, 222–223, 16–22. [Google Scholar] [CrossRef]
- Molin, S.; Dunst, K.J.; Karczewski, J.; Jasiński, P. High Temperature Corrosion Evaluation of Porous Hastelloy X Alloy in Air and Humidified Hydrogen Atmospheres. J. Electrochem. Soc. 2016, 163, C296–C302. [Google Scholar] [CrossRef]
- Karczewski, J.; Dunst, K.J.; Jasinski, P.; Molin, S. High temperature corrosion and corrosion protection of porous Ni22Cr alloys. Surf. Coat. Technol. 2015, 261, 385–390. [Google Scholar] [CrossRef]
- Molin, S.; Gazda, M.; Kusz, B.; Jasinski, P. Evaluation of 316L porous stainless steel for SOFC support. J. Eur. Ceram. Soc. 2009, 29, 757–762. [Google Scholar] [CrossRef]
- Evans, H.E. A creep analysis of the deflection test for evaluating oxide growth stresses. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 1995, 203, 117–127. [Google Scholar] [CrossRef]
- Evans, H.E. Stress Effects in High-Temperature Oxidation of Metals. Int. Mater. Rev. 1995, 40, 1–40. [Google Scholar] [CrossRef]
- Ward, G.; Hockenhull, B.S.; Hancock, P. The Effect of Cyclic Stressing on the Oxidation of a Low-Carbon Steel. Met. Trans. 1974, 5, 1451–1455. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, J.; Xu, K.; Yang, J.; Zhu, L. Fabrication, property and performance evaluation of Stainless Steel 430L as porous supports for metal supported solid oxide fuel cells. Front. Energy Res. 2023, 11, 1127900. [Google Scholar] [CrossRef]
- Brady, M.P.; Keiser, J.R.; More, K.L.; Fayek, M.; Walker, L.R.; Peascoe-Meisner, R.A.; Anovitz, L.M.; Wesolowski, D.J.; Cole, D.R. Comparison of Short-Term Oxidation Behavior of Model and Commercial Chromia-Forming Ferritic Stainless Steels in Dry and Wet Air. Oxid. Met. 2012, 78, 1–16. [Google Scholar] [CrossRef]
- Quadakkers, W.J.; Ennis, P.J.; Zurek, J.; Michalik, M. Steam oxidation of ferritic steels—Laboratory test kinetic data. Mater. High Temp. 2005, 22, 47–60. [Google Scholar] [CrossRef]
- Stringer, J. Rate-Controlling Processes in the High-Temperature Oxidation of Tantalum. J. Electrochem. Soc. 1967, 114, 428. [Google Scholar] [CrossRef]
- Tien, J.K.; Rand, W.H. The Effect of Active Element Addition on Void Formation during Oxidation. Scr. Met. 1972, 6, 55–57. [Google Scholar] [CrossRef]
- Essuman, E.; Meier, G.H.; Żurek, J.; Hänsel, M.; Quadakkers, W.J. The effect of water vapor on selective oxidation of Fe–Cr alloys. Oxid. Met. 2008, 69, 143–162. [Google Scholar] [CrossRef]
- Tucker, M.C. Progress in metal-supported solid oxide electrolysis cells: A review. Int. J. Hydrog. Energy 2020, 45, 24203–24218. [Google Scholar] [CrossRef]
- Koszelow, D.; Makowska, M.; Drewniak, A.; Cempura, G.; Jasiński, P.; Molin, S. High-temperature Corrosion of ~30 Pct Porous FeCr Stainless Steels in Air: Long-Term Evaluation Up to Breakaway. Met. Mater. Trans. A Phys. Metall. Mater. Sci. 2023, 54, 2244–2258. [Google Scholar] [CrossRef]
- Koszelow, D.; Molin, S.; Karczewski, J.; Marone, F.; Makowska, M. Morphology changes in Fe-Cr porous alloys upon high-temperature oxidation quantified by X-ray tomographic microscopy. Mater. Des. 2022, 215, 110492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Zhu, L. Long-Term Oxidation Studies on Porous Stainless Steel 430L Substrate Relevant to Its Application in Metal-Supported SOFC. Metals 2024, 14, 475. https://doi.org/10.3390/met14040475
Xu K, Zhu L. Long-Term Oxidation Studies on Porous Stainless Steel 430L Substrate Relevant to Its Application in Metal-Supported SOFC. Metals. 2024; 14(4):475. https://doi.org/10.3390/met14040475
Chicago/Turabian StyleXu, Kai, and Liangzhu Zhu. 2024. "Long-Term Oxidation Studies on Porous Stainless Steel 430L Substrate Relevant to Its Application in Metal-Supported SOFC" Metals 14, no. 4: 475. https://doi.org/10.3390/met14040475
APA StyleXu, K., & Zhu, L. (2024). Long-Term Oxidation Studies on Porous Stainless Steel 430L Substrate Relevant to Its Application in Metal-Supported SOFC. Metals, 14(4), 475. https://doi.org/10.3390/met14040475