A Study of {10-12} Twinning Activity Associated with Stress State in Mg-3Al-1Zn Alloy during Compression
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Distribution of the Hardness Values
3.2. Microstructure after Uniaxial Compression
3.3. Microstructure and Texture Differences in Different Regions
3.4. SF Ratio Distribution
3.5. Strain Compatibility Factor
3.6. Twin Chains in Different Regions
4. Conclusions
- (1)
- Under inhomogeneous deformation, the strain and microstructure of the compressed AZ31 magnesium alloy sample exhibit significant variations across different regions.
- (2)
- Basal on SF ratio distribution, the Schmid factor criterion, can predict over 75% of observed twin variants in regions A and D (normal stress samples). In contrast, 64% of twin variant selection behavior in region C (shear stress sample) can be effectively explained using a pure shear model.
- (3)
- The strain compatibility factor is insensitive to the loading direction. It is more appropriate for analyzing the twin activity of twin–twin interactions in adjacent grains. In certain regions with non-uniform local strain, the twin activity is more complex and requires comprehensive evaluation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahmatabadi, D.; Hashemi, R.; Tayyebi, M.; Bayati1, A. Investigation of mechanical properties, formability, and anisotropy of dual phase Mg–7Li–1Zn. Mater. Res. Express 2019, 6, 096543. [Google Scholar] [CrossRef]
- Zhu, H.W.; Yu, B.Y.; Cai, J.K.; Bian, J.C.; Zheng, L. Effect of initial microstructures on microstructures and properties of extruded AZ31 alloy. Mater. Sci. Technol. 2023, 39, 1579–1591. [Google Scholar] [CrossRef]
- Xie, J.L.; Zhou, Y.H.; Zhou, C.P.; Li, X.P.; Chen, Y.H. Microstructure and mechanical properties of Mg–Li alloys fabricated by wire arc additive manufacturing. J. Mater. Res. Technol. 2024, 29, 3487–3493. [Google Scholar] [CrossRef]
- Zhao, X.H.; Ren, B.Q.; Zhang, Y.W.; Wang, H.; Liu, Y.; Zhang, X.E.; Chen, C. Microstructural evolution and strengthening mechanisms of CMT directed energy deposition-arc with interlayer ultrasonic impact treatment manufactured AZ31 magnesium alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2023, 879, 145267. [Google Scholar] [CrossRef]
- Barnett, M.R. Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Mater. Sci. Eng. A 2007, 464, 1–7. [Google Scholar] [CrossRef]
- Barnett, M.R. Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins. Mater. Sci. Eng. A 2007, 464, 8–16. [Google Scholar] [CrossRef]
- Malik, A.; Wang, Y.; Nazeer, F.; Khan, M.A.; Ali, T.; Ain, Q.T. Effect of pre-straining on twinning, texture and mechanical behavior of magnesium alloys A-review. J. Mater. Res. Technol. 2020, 9, 14478–14499. [Google Scholar] [CrossRef]
- Jiang, L.; Jonas, J.J.; Mishra, R.K.; Luo, A.A.; Sachdev, A.K.; Godet, S. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater. 2007, 55, 3899–3910. [Google Scholar] [CrossRef]
- Brown, D.W.; Almer, J.D.; Clausen, B.; Mosbrucker, P.L.; Sisneros, T.A.; Vogel, S.C. Twinning and de-twinning in beryllium during strain path changes. Mater. Sci. Eng. A 2013, 559, 29–39. [Google Scholar] [CrossRef]
- Park, S.H.; Hong, S.-G.; Lee, J.H.; Huh, Y.-H. Texture evolution of rolled Mg–3Al–1Zn alloy undergoing a {10-12} twinning dominant strain path change. J. Alloys Compd. 2015, 646, 573–579. [Google Scholar] [CrossRef]
- Hou, D.W.; Li, Q.Z.; Wen, H.M. Study of reversible motion of 10ī2 tensile twin boundaries in a magnesium alloy during strain path changes. Mater. Lett. 2018, 231, 84–86. [Google Scholar] [CrossRef]
- Wang, B.; Xin, R.; Huang, G.; Liu, Q. Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression. Mater. Sci. Eng. A 2012, 534, 588–593. [Google Scholar] [CrossRef]
- Hou, M.J.; Zhang, H.; Fan, J.F.; Zhang, Q.; Wang, L.F.; Dong, H.B.; Xu, B.S. Microstructure evolution and deformation behaviors of AZ31 Mg alloy with different grain orientation during uniaxial compression. J. Alloys Compd. 2018, 741, 514–526. [Google Scholar] [CrossRef]
- Jiang, J.; Godfrey, A.; Liu, W.; Liu, Q. Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31. Mater. Sci. Eng. A 2008, 483, 576–579. [Google Scholar] [CrossRef]
- Zhou, L.; Yan, R.; He, Z.; Wang, Z.; Wang, F.; Wei, Z.; Mao, P.; Liu, Z. Quasi-in situ observation of extension twinning of AZ31 magnesium alloy under co-directional dynamic compression. J. Alloys Compd. 2023, 969, 172495. [Google Scholar] [CrossRef]
- Hong, S.-G.; Park, S.H.; Lee, C.S. Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 2010, 58, 5873–5885. [Google Scholar] [CrossRef]
- Song, B.; Xin, R.; Liang, Y.; Chen, G.; Liu, Q. Twinning characteristic and variant selection in compression of a pre-side-rolled Mg alloy sheet. Mater. Sci. Eng. A 2014, 614, 106–115. [Google Scholar] [CrossRef]
- Luo, J.R.; Godfrey, A.; Liu, W.; Liu, Q. Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling. Acta Mater. 2012, 60, 1986–1998. [Google Scholar] [CrossRef]
- Barnett, M.; Keshavarz, Z.; Beer, A.; Ma, X. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 2008, 56, 5–15. [Google Scholar] [CrossRef]
- Jonas, J.J.; Mu, S.; Al-Samman, T.; Gottstein, G.; Jiang, L.; Martin, Ė. The role of strain accommodation during the variant selection of primary twins in magnesium. Acta Mater. 2011, 59, 2046–2056. [Google Scholar] [CrossRef]
- Xin, R.; Ding, C.; Guo, C.; Liu, Q. Crystallographic analysis on the activation of multiple twins in rolled AZ31 Mg alloy sheets during uniaxial and plane strain compression. Mater. Sci. Eng. A 2015, 652, 42–50. [Google Scholar] [CrossRef]
- Lou, C.; Zhang, X.Y.; Ren, Y. Non-Schmid-based {10-12} twinning behavior in polycrystalline magnesium alloy. Mater. Charact. 2015, 107, 249–254. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, B.; Huang, G.; Li, L.; Xie, C.; Tang, C. Initiation and strain compatibility of connected extension twins in AZ31 magnesium alloy at high temperature. Mater. Charact. 2016, 122, 197–205. [Google Scholar] [CrossRef]
- Xin, R.; Guo, C.; Xu, Z.; Liu, G.; Huang, X.; Liu, Q. Characteristics of long {10-12} twin bands in sheet rolling of a magnesium alloy. Scr. Mater. 2014, 74, 96–99. [Google Scholar] [CrossRef]
- Shi, Z.Z. Secondary twin variant selection in Mg alloy after a strain-path change. J. Alloys Compd. 2017, 696, 510–515. [Google Scholar] [CrossRef]
- Vasilev, E.; Knezevic, M. Experimental characterization of voids and surrounding microstructures developed under tension of Mg, Mg–3Zn, and Ti: A statistical study. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2023, 862, 144411. [Google Scholar] [CrossRef]
- Yaddanapudi, K.; Kumar, M.A.; Wang, J.; Wang, X.; Rupert, T.J.; Lavernia, E.J.; Schoenung, J.M.; Beyerlein, I.J.; Mahajan, S. Local hardening and asymmetric twin growth by twin-twin interactions in a Mg alloy. J. Magnes. Alloys 2023, 11, 176–191. [Google Scholar] [CrossRef]
- Paramatmuni, C.; Zheng, Z.; Rainforth, W.M.; Dunne, F.P.E. Twin nucleation and variant selection in Mg alloys: An integrated crystal plasticity modelling and experimental approach. Int. J. Plast. 2020, 135, 102778. [Google Scholar] [CrossRef]
- Guo, C.; Xin, R.; Ding, C.; Song, B.; Liu, Q. Understanding of variant selection and twin patterns in compressed Mg alloy sheets via combined analysis of Schmid factor and strain compatibility factor. Mater. Sci. Eng. A 2014, 609, 92–101. [Google Scholar] [CrossRef]
- Shi, Z.Z.; Liu, X.F. Characteristics of cross grain boundary contraction twin pairs and bands in a deformed Mg alloy. J. Alloys Compd. 2017, 692, 274–279. [Google Scholar] [CrossRef]
- Yoshida, Y.; Shibano, J.-I.; Ogura, M.; Saito, K.; Kajiwara, K. Localized shear deformation in magnesium alloy by four-point bending. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2020, 793, 139851. [Google Scholar] [CrossRef]
- Huang, H.T.; Godfrey, A.; Zheng, J.P.; Liu, W. Influence of local strain on twinning behavior during compression of AZ31 magnesium alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2015, 640, 330–337. [Google Scholar] [CrossRef]
- Chang, Y.; Tian, J.; Deng, J.-F.; Zhou, Y.; Wang, X.; Liang, W.; Shi, Q.-X. Local twinning behavior of ZK61m magnesium alloy sheet under multiaxial stress during drawing-pressing with Erichsen test machine. J. Alloys Compd. 2023, 968, 171880. [Google Scholar] [CrossRef]
- Fallahi, H.; Davies, C. Evolution of twinning during cyclic loading of magnesium alloy examined by quasi-in-situ EBSD. Mater. Sci. Eng. A 2021, 820, 141375. [Google Scholar] [CrossRef]
- Jia, Y.; Jiang, S.S.; Tan, J.; Lu, Z.; Jiang, J.F.; Wang, X.J. The evolution of local stress during deformation twinning in a Mg-Gd-Y-Zn alloy. Acta Mater. 2022, 222, 117452. [Google Scholar] [CrossRef]
- Fidder, H.; Basu, I.; DeHosson, J.T.M. Twinning induced spatial stress gradients: Local versus global stress states in hexagonal close-packed materials. Acta Mater. 2023, 256, 119142. [Google Scholar] [CrossRef]
- Siska, F.; Drozdenko, D.; Mathis, K.; Cizek, J.; Guo, T.T.; Barnett, M. Three-dimensional crystal plasticity and HR-EBSD analysis of the local stress-strain fields induced during twin propagation and thickening in magnesium alloys. J. Magnes. Alloys 2023, 11, 657–670. [Google Scholar] [CrossRef]
- Gao, Y.P.; Zhao, L.; Zha, M.; Du, C.F.; Hua, Z.M.; Guan, K.; Wang, H.Y. Twinning-induced plasticity with multiple twinning modes and disclinations in Mg alloys. Int. J. Plast. 2023, 164, 103595. [Google Scholar] [CrossRef]
- Jiang, J.; Godfrey, A.; Liu, W.; Liu, Q. Identification and analysis of twinning variants during compression of a Mg-Al-Zn alloy. Scr. Mater. 2008, 58, 122–125. [Google Scholar] [CrossRef]
- Mu, S.; Jonas, J.J.; Gottstein, G. Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy. Acta Mater. 2012, 60, 2043–2053. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, B.; Wang, W.; Yao, J.; Deng, L.; Xiao, L.; Wang, B. A Study of {10-12} Twinning Activity Associated with Stress State in Mg-3Al-1Zn Alloy during Compression. Metals 2024, 14, 502. https://doi.org/10.3390/met14050502
Lu B, Wang W, Yao J, Deng L, Xiao L, Wang B. A Study of {10-12} Twinning Activity Associated with Stress State in Mg-3Al-1Zn Alloy during Compression. Metals. 2024; 14(5):502. https://doi.org/10.3390/met14050502
Chicago/Turabian StyleLu, Boqin, Wei Wang, Jinyi Yao, Liping Deng, Lei Xiao, and Bingshu Wang. 2024. "A Study of {10-12} Twinning Activity Associated with Stress State in Mg-3Al-1Zn Alloy during Compression" Metals 14, no. 5: 502. https://doi.org/10.3390/met14050502
APA StyleLu, B., Wang, W., Yao, J., Deng, L., Xiao, L., & Wang, B. (2024). A Study of {10-12} Twinning Activity Associated with Stress State in Mg-3Al-1Zn Alloy during Compression. Metals, 14(5), 502. https://doi.org/10.3390/met14050502