Effect of TiB2 Addition on the Microstructure and Mechanical Properties of Laser-Directed Energy Deposition TiAl Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Result
3.1. Microstructure of Alloy with Different TiB2 Addition
3.2. Mechanical Property
3.2.1. Micro-Hardness and Nanoindentation
3.2.2. Compression Test
4. Discussion
4.1. Microstructure Evolution
4.1.1. The Equivalation and Refinement Mechanism of Grain
4.1.2. The Transition Mechanism of Phase
4.2. Effect of TiB2 on Mechanical Properties of Alloy
5. Conclusions
- (1)
- The addition of TiB2 can promote equivalence and grain refinement in the TiAl alloy prepared by L-DED. The grain morphology of the Ti-Al alloy without TiB2 had alternating columnar and equiaxed grains, and the transverse size of columnar grains was 245 μm. However, the grain morphology of 0.45 wt.% TiB2-TiAl and 0.9 wt.% TiB2-TiAl alloys was nearly fully equiaxed, with an average grain size of 168 μm and 133 μm, respectively. Compared to no TiB2 addition, it has decreased by 30% and 45%.
- (2)
- The addition of TiB2 promoted the transformation of the alloy structure from a structure consisting of (α2 + γ) lamellar and γm to a full (α2 + γ) lamellar structure with refined lamellar spacing. The lamellar spacing was 1.3 μm for TiAl, 0.9 μm for 0.45 wt.% TiB2-TiAl, and 0.8 μm for 0.9 wt.% TiB2-TiAl.
- (3)
- With the increase in TiB2 content, the grains were refined, the volume fraction of (α2 + γ) lamellar increased, and the lamellar spacing was decreased, which made the hardness, room temperature, and high-temperature compressive strength and ductility of the alloy gradually increase.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Chen, C.; Squartini, T.; He, Q. A study on wear resistance and microcrack of the Ti3Al/TiAl+ TiC ceramic layer deposited by laser cladding on Ti–6Al–4V alloy. Appl. Surf. Sci. 2010, 257, 1550–1555. [Google Scholar] [CrossRef]
- Wang, H.; Xie, G.; Jia, Y.; Yao, H.; Xiao, S.; Chen, Y.; Han, J.; Wang, T. Solidification Microstructure Evolution and Mechanical Properties of Casting Ti-48Al-2Cr-2Nb-(Ni, TiB2) Alloy. Rare Met. Mater. Eng. 2022, 51, 2316–2322. [Google Scholar]
- Chen, Y.; Kong, F.; Tian, J.; Chen, Z.; Xiao, S. Recent developments in engineering gamma-TiAl intermetallics. Trans. Nonferrous Met. Soc. China 2002, 12, 605–609. [Google Scholar]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.D.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Soliman, H.A.; Elbestawi, M. Titanium aluminides processing by additive manufacturing—A review. Int. J. Adv. Manuf. Technol. 2022, 119, 5583–5614. [Google Scholar] [CrossRef]
- Mohammad, A.; Al-Ahmari, A.M.; AlFaify, A.; Mohammed, M.K. Effect of melt parameters on density and surface roughness in electron beam melting of gamma titanium aluminide alloy. Rapid Prototyp. J. 2017, 23, 474–485. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Zheng, M.; Ye, Z.; Yang, X.; Gu, J. Anisotropic tensile behavior of Ti-47Al-2Cr-2Nb alloy fabricated by direct laser deposition. Addit. Manuf. 2020, 32, 101087. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Tian, J.; Kong, F.; Xiao, S.; Xu, L. Development and research status of investment casting TiAl-based alloys. Rare Met. Mater. Eng. 2009, 38, 554–558. [Google Scholar]
- Dong, L.; Cui, Y.; Yang, R. Effects of B or C on the macro-and micro-structures of cast near gamma TiAl alloys. Acta Metall. 2002, 38, 643–646. [Google Scholar]
- Ouadah, O.; Merad, G.; Abdelkader, H.S. Energetic segregation of B, C, N, O at the γ-TiAl/α2-Ti3Al interface via DFT approach. Vacuum 2021, 186, 110045. [Google Scholar] [CrossRef]
- Han, J.; Xiao, S.; Tian, J.; Chen, Y.; Xu, L.; Wang, X.; Jia, Y.; Du, Z.; Cao, S. Grain refinement by trace TiB2 addition in conventional cast TiAl-based alloy. Mater. Charact. 2015, 106, 112–122. [Google Scholar] [CrossRef]
- Kim, M.; Oh, M.; Lee, J.; Inui, H.; Yamaguchi, M.; Wee, D. Composition and growth rate effects in directionally solidified TiAl alloys. Mater. Sci. Eng. A 1997, 239, 570–576. [Google Scholar] [CrossRef]
- Fan, L.; Kou, H.; Zhong, H.; Zhang, T.; Li, J. Effects of Boron Addition on Phase Transformation of Ti47Al Alloy. Rare Met. Mater. Eng. 2014, 43, 115–119. [Google Scholar]
- Sarma, B.; Chandran, K.R. Accelerated kinetics of surface hardening by diffusion near phase transition temperature: Mechanism of growth of boride layers on titanium. Acta Mater. 2011, 59, 4216–4228. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, Y.; Yao, X.; Tan, Q.; Chang, H.; Wang, D.; Lu, S.; Liu, S.; Xu, J.; Jin, S.; et al. From crack-prone to crack-free: Unravelling the roles of LaB6 in a β-solidifying TiAl alloy fabricated with laser additive manufacturing. Mater. Sci. Eng. A 2022, 861, 144358. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Liu, J.; Zhou, Y.; Li, M.; Wen, S.; Wei, Q.; Yan, C.; Shi, Y. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting. Acta Mater. 2017, 136, 90–104. [Google Scholar] [CrossRef]
- Yang, S.; Cui, C.; Cui, S.; Liu, S.; Liang, Y. Microstructure and mechanical properties of in-situ dual morphology Ti8C5/TiB2 reinforced TiAl composite. Mater. Sci. Eng. A 2022, 840, 142918. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, W.; Zhang, E.; Zeng, S. Morphology Evolution and Growth Mechanism of TiB~2 in Ti-54Al-xB Alloys. Acta Metall. Sin.-Chin. Ed. 2002, 38, 699–702. [Google Scholar]
- Cheng, T. The mechanism of grain refinement in TiAl alloys by boron addition—An alternative hypothesis. Intermetallics 2000, 8, 29–37. [Google Scholar] [CrossRef]
- Hyman, M.E.; McCullough, C.; Valencia, J.J.; Levi, C.G.; Mehrabian, R. Microstructure evolution in TiAl alloys with B additions: Conventional solidification. Metall. Trans. A 1989, 20, 1847–1859. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Tang, H.-B.; Li, Z.; Xu, C.; He, B. Solidification behavior and grain morphology of laser additive manufacturing titanium alloys. J. Alloys Compd. 2019, 777, 712–716. [Google Scholar] [CrossRef]
- Genc, O.; Unal, R. Development of gamma titanium aluminide (γ-TiAl) alloys: A review. J. Alloys Compd. 2022, 929, 167262. [Google Scholar] [CrossRef]
- Hyman, M.E.; McCullough, C.; Levi, C.G.; Mehrabian, R. Evolution of boride morphologies in TiAl-B alloys. Metall. Trans. A 1991, 22, 1647–1662. [Google Scholar] [CrossRef]
- Hu, B.; Jiang, Y.; Wang, J.; Yao, B.; Min, F.; Du, Y. Thermodynamic calculation of the T0 curve and metastable phase diagrams of the Ti–M (M = Mo, V, Nb, Cr, Al) binary systems. Calphad 2018, 62, 75–82. [Google Scholar] [CrossRef]
- Hu, D.; Huang, A.; Loretto, M.H.; Wu, X. Designing TiAl alloys to transform massively during slow cooling. In Proceedings of the 11th World Conference on Titanium, Kyoto, Japan, 3–7 June 2007. [Google Scholar]
- Clemens, H.; Mayer, S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 2013, 15, 191–215. [Google Scholar] [CrossRef]
- Han, J.; Xiao, S.; Tian, J.; Chen, Y.; Xu, L.; Wang, X.; Cao, S. Microstructure characterization, mechanical properties and toughening mechanism of TiB2-containing conventional cast TiAl-based alloy. Mater. Sci. Eng. A 2015, 645, 8–19. [Google Scholar] [CrossRef]
- Worth, B.D.; Jones, J.W.; Allison, J.E. Creep deformation in near-γ TiAl: II. influence of carbon on creep deformation in Ti-48Al-1V-0.3C. Metall. Mater. Trans. A 1995, 26, 2961–2972. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.; Hamar-Thibault, S.; Hamar, R. Crystal morphology of the compound TiB2. Journal of crystal growth 1985, 71, 744–750. [Google Scholar] [CrossRef]
- Panov, D.O.; Sokolovsky, V.S.; Stepanov, N.D.; Zherebtsov, S.V.; Panin, P.V.; Volokitina, E.I.; Nochovnaya, N.A.; Salishchev, G.A. Effect of interlamellar spacing on strength-ductility combination of β-solidified γ-TiAl based alloy with fully lamellar structure. Mater. Sci. Eng. A 2023, 862, 144458. [Google Scholar] [CrossRef]
- Hirose, A.; Hasegawa, M.; Kobayashi, K.F. Microstructures and mechanical properties of TiB2 particle reinforced TiAl composites by plasma arc melting process. Mater. Sci. Eng. A 1997, 239, 46–54. [Google Scholar] [CrossRef]
Ti | Al | Cr | Nb | B | |
---|---|---|---|---|---|
1 | 48.9 | 42.7 | 3.5 | 4.9 | 0 |
2 | 49.8 | 42.3 | 3.4 | 4.5 | 0 |
3 | 65.4 | 5.6 | 0 | 0.3 | 28.7 |
4 | 67.4 | 2.1 | 0 | 0 | 30.5 |
Specimen | Average Microhardness (HV) |
---|---|
Pure TiAl | 286.0 |
0.45 wt.% TiB2-TiAl | 303.2 |
0.9 wt.% TiB2-TiAl | 309.2 |
Affiliated Alloys | Measurement Phase | Indentation Depth (μm) | H (GPa) | E (GPa) |
---|---|---|---|---|
Pure TiAl | α2 + γ lamellar | 0.708 | 4.98 | 134.31 |
0.45 wt.% TiB2-TiAl | α2 + γ lamellar | 0.697 | 5.06 | 136.5 |
0.9 wt.% TiB2-TiAl | α2 + γ lamellar | 0.687 | 5.14 | 138.45 |
Pure TiAl | γm | 0.726 | 4.69 | 129.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Hu, Y.; Chen, H.; Li, Y.; Wang, J.; Cheng, X.; Tang, H.; Ran, X.; Liu, D. Effect of TiB2 Addition on the Microstructure and Mechanical Properties of Laser-Directed Energy Deposition TiAl Alloy. Metals 2024, 14, 533. https://doi.org/10.3390/met14050533
Yang Y, Hu Y, Chen H, Li Y, Wang J, Cheng X, Tang H, Ran X, Liu D. Effect of TiB2 Addition on the Microstructure and Mechanical Properties of Laser-Directed Energy Deposition TiAl Alloy. Metals. 2024; 14(5):533. https://doi.org/10.3390/met14050533
Chicago/Turabian StyleYang, Yancheng, Yi Hu, Hongyan Chen, Yu Li, Jiawei Wang, Xu Cheng, Haibo Tang, Xianzhe Ran, and Dong Liu. 2024. "Effect of TiB2 Addition on the Microstructure and Mechanical Properties of Laser-Directed Energy Deposition TiAl Alloy" Metals 14, no. 5: 533. https://doi.org/10.3390/met14050533
APA StyleYang, Y., Hu, Y., Chen, H., Li, Y., Wang, J., Cheng, X., Tang, H., Ran, X., & Liu, D. (2024). Effect of TiB2 Addition on the Microstructure and Mechanical Properties of Laser-Directed Energy Deposition TiAl Alloy. Metals, 14(5), 533. https://doi.org/10.3390/met14050533