Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experimental Setup
2.3. Numerical Model
3. Results and Discussion
4. Conclusions
- The greatest agreement between the FEM results and the experimental result of the axial component of forming force was obtained for finite elements with a size of 1 mm;
- The maximum values of the axial component (Fz) of forming force determined experimentally and numerically differ by approximately 8%;
- The numerically determined variation of the in-plane component (Fxy) of forming force is in high agreement with experimental results for a drawpiece depth range up to 9 mm. After exceeding this depth, the FE-based model overestimates the value of in-plane force;
- As a result of friction stir rotation-assisted heating, with increases in the drawpiece depth, the temperature accumulates in the area of contact of the tool tip with the workpiece, which is associated with a decrease in the tool path radius and the intensification of frictional contact;
- The temperature increase as a result of friction stir rotation-assisted heating of the workpiece occurs only in the area of direct contact between the tool tip and the drawpiece. After passing the tool, the temperature gradually decreases. However, part of the thermal energy is transferred to the surroundings and to the remaining area of the drawpiece, which is heated with oil to a temperature of 200 °C;
- The comparison of sheet thickness distribution of the final drawpiece obtained using the experiment and finite element method confirms the reliability of the developed numerical model of pressure-assisted warm-forming with combined oil-heating and friction stir rotation-assisted heating of the workpiece. The error between numerically predicted and experimentally measured values of the minimum wall thickness of a Ti-6Al-4V drawpiece is about 5%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Więckowski, W.; Adamus, J.; Dyner, M.; Motyka, M. Tribological aspects of sheet titanium forming. Materials 2023, 16, 2224. [Google Scholar] [CrossRef] [PubMed]
- Lacki, P.; Adamus, J.; Więckowski, W.; Winowiecka, J. Forming of spherical titanium cups from circular blanks with cutouts on the perimeter. Arch. Metall. Mater. 2015, 60, 829–834. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Najm, S.M. Current trends in metallic materials for body panels and structural members used in the automotive industry. Materials 2024, 17, 590. [Google Scholar] [CrossRef] [PubMed]
- Oleksik, V.; Trzepieciński, T.; Szpunar, M.; Chodoła, Ł.; Ficek, D.; Szczęsny, I. Single-point incremental forming of titanium and titanium alloy sheets. Materials 2021, 14, 6372. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Pan, Y.; Zou, Y. Application and optimization design of titanium alloy in sports equipment. J. Phys. Conf. Series 2021, 1820, 012011. [Google Scholar] [CrossRef]
- Oleksik, V.; Pascu, A.; Deac, C.; Fleaca, R.; Roman, M.; Bologa, O. The influence of geometrical parameters on the incremental forming process for knee implants analyzed by numerical simulation. AIP Conf. Proc. 2010, 1252, 1208–1215. [Google Scholar]
- Sbayti, M.; Bahloul, R.; BelHadjSalah, H.; Zemzemi, F. Optimization techniques applied to single point incremental forming process for biomedical application. Int. J. Adv. Manuf. Technol. 2018, 95, 1789–1804. [Google Scholar] [CrossRef]
- Milutinović, M.; Lendjel, R.; Baloš, S.; Zlatanović, D.L.; Sevšek, L.; Pepelnjak, T. Characterisation of geometrical and physical properties of a stainless steel denture framework manufactured by single-point incremental forming. J. Mater. Res. Technol. 2021, 10, 605–623. [Google Scholar] [CrossRef]
- Więckowski, W.; Motyka, M.; Adamus, J.; Lacki, P.; Dyner, M. Numerical and experimental analysis of titanium sheet forming for medical instrument parts. Materials 2022, 15, 1735. [Google Scholar] [CrossRef]
- Adamus, J. Wybrane problemy kształtowania blach tytanowych. Obróbka Plast. Met. 2008, 19, 29–36. [Google Scholar]
- Maqbool, F.; Bambach, M. Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy. Int. J. Mech. Sci. 2018, 136, 279–292. [Google Scholar] [CrossRef]
- Sevšek, L.; Pepelnjak, T. The review of the achievements in the field of incremental forming. Res. Sci. Today 2019, 1, 124–135. [Google Scholar]
- Oleksik, V. Influence of geometrical parameters, wall angle and part shape on thickness reduction of single point incremental forming. Procedia Eng. 2014, 81, 2280–2285. [Google Scholar] [CrossRef]
- Najm, S.M.; Paniti, I.; Viharos, Z.J. Lubricants and Affecting Parameters on Hardness in SPIF of AA1100 Aluminium. In Proceedings of the 17th IMEKO TC 10 and EUROLAB Virtual Conference: “Global Trends in Testing, Diagnostics & Inspection for 2030”, Zagreb, Horvátország, 22 October 2020; pp. 387–392. [Google Scholar]
- Blaga, A.; Oleksik, V. A Study on the influence of the forming strategy on the main strains, thickness reduction, and forces in a single point incremental forming process. Adv. Mater. Sci. Eng. 2013, 2013, 382635. [Google Scholar] [CrossRef]
- Petek, A.; Gantar, G.; Pepelnjak, T.; Kuzman, K. Economical and ecological aspects of single point incremental forming versus deep drawing technology. Key Eng. Mater. 2007, 344, 931–938. [Google Scholar] [CrossRef]
- Oleksik, V.; Bologa, O.; Breaz, R.; Racz, G. Comparison between the numerical simulations of incremental sheet forming and conventional stretch forming process. Int. J. Mater. Form. 2008, 1, 1187–1190. [Google Scholar] [CrossRef]
- Najm, S.M.; Paniti, I. Artificial neural network for modeling and investigating the effects of forming tool characteristics on the accuracy and formability of thin aluminum alloy blanks when using SPIF. Int. J. Adv. Manuf. Technol. 2021, 114, 2591–2615. [Google Scholar] [CrossRef]
- Najm, S.M.; Paniti, I. Investigation and machine learning-based prediction of parametric effects of single point incremental forming on pillow effect and wall profile of AlMn1Mg1 aluminum alloy sheets. J. Intell. Manuf. 2023, 34, 331–367. [Google Scholar] [CrossRef]
- Behera, A.K.; Ou, H. Effect of stress relieving heat treatment on surface topography and dimensional accuracy of incrementally formed Grade 1 titanium sheet parts. Int. J. Adv. Manuf. Technol. 2016, 87, 3233–3248. [Google Scholar] [CrossRef]
- Pepelnjak, T.; Petek, A.; Kuzman, K. Selection of manufacturing concepts for small batch sheet metal forming operations. J. Technol. Plast. 2008, 33, 91–100. [Google Scholar]
- Almadani, M.; Guner, A.; Hassanin, H.; Essa, K. Hot-air contactless single-point incremental forming. J. Manuf. Mater. Process. 2023, 7, 179. [Google Scholar] [CrossRef]
- Sbayti, M.; Bahloul, R.; Belhadjsalah, H. Simulation of the Local Heating Effect on Incremental Sheet Forming Process. In Advances in Mechanical Engineering, Materials and Mechanics. ICAMEM 2019. Lecture Notes in Mechanical Engineering; Kharrat, M., Baccar, M., Dammak, F., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szpunar, M.; Ostrowski, R. Split-plot I-optimal design optimisation of combined oil-based and friction stir rotation-assisted heating in SPIF of Ti-6Al-4V titanium alloy sheet under variable oil pressure. Metals 2022, 12, 113. [Google Scholar] [CrossRef]
- Naranjo, J.A.; Miguel, V.; Coello, J.; Manjabacas, M.C.; Martínez-Martínez, A.; García-Martínez, E. Tribological characterization of the heat-assisted single point incremental forming process applied to the Ti6Al4V Alloy with the definition of an adhesion Parameter for the Tool Surface. Materials 2021, 14, 7641. [Google Scholar] [CrossRef]
- Behera, A.K.; de Sousa, R.A.; Ingarao, G.; Oleksik, V. Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015. J. Manuf. Proc. 2017, 27, 37–62. [Google Scholar] [CrossRef]
- Adamus, J.; Lackner, J.M.; Major, Ł. A study of the impact of anti-adhesive coatings on the sheet-titanium forming processes. Arch. Civ. Mech. Eng. 2013, 13, 64–71. [Google Scholar] [CrossRef]
- Thakur, S.; Chauhan, S.R. Development of a critical edge-based adaptive toolpath strategy to improve geometrical accuracy of incrementally formed titanium implants. J. Manuf. Proc. 2024, 110, 114–125. [Google Scholar] [CrossRef]
- Abdelkader, W.B.; Bahloul, R.; Arfa, H. Numerical Investigation of the Influence of some Parameters in SPIF Process on the Forming Forces and Thickness Distributions of a Bimetallic Sheet CP-Titanium/Low-carbon Steel Compared to an Individual Layer. Procedia Manuf. 2020, 47, 1319–1327. [Google Scholar] [CrossRef]
- Li, R.; Wang, T.; Li, F. The Formability of Perforated TA1 Sheet in Single Point Incremental Forming. Materials 2023, 16, 3176. [Google Scholar] [CrossRef]
- Xu, Q.; Yao, Z. Forming Parameters on Friction during Single Point Incremental Forming. Adv. Mater. Sci. Eng. 2022, 2022, 7534196. [Google Scholar] [CrossRef]
- Yoganjaneyulu, G.; Narayanan, C.S.; Narayanasamy, R. Investigation on the fracture behavior of titanium grade 2 sheets by using the single point incremental forming process. J. Manuf. Proc. 2018, 35, 197–204. [Google Scholar] [CrossRef]
- Sbayti, M.; Ghiotti, A.; Bahloul, R.; Belhadjsalah, H.; Bruschi, S. Finite Element Analysis of hot Single Point Incremental forming of hip prostheses. MATEC Web Conf. 2016, 80, 14006. [Google Scholar] [CrossRef]
- Palumbo, G.; Brandizzi, M.; Cervelli, G.; Fracchiolla, M. Investigations about the Single Point Incremental Forming of anisotropic Titanium alloy sheets. Adv. Mater. Res. 2011, 264–365, 188–193. [Google Scholar] [CrossRef]
- Naranjo, J.; Miguel, V.; Martinez, A.; Coello, J.; Manjabacas, M.C.; Valera, J. Influence of temperature on alloy Ti6Al4V formability during the warm SPIF process. Procedia Eng. 2017, 207, 866–871. [Google Scholar] [CrossRef]
- Hadoush, A.; van den Boogaard, A.H. Efficient implicit simulation of incremental sheet forming. Int. J. Num. Meth. Eng. 2012, 90, 597–612. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Guines, D.; Léotoing, L.; Thuillier, S. Incremental forming of Titanium T40 sheet: Experimental and numerical investigations. In Proceedings of the 24ème Congrès Français de Mécanique, Brest, France, 26–30 August 2019; pp. 1–7. [Google Scholar]
- Saidi, B.; Moreau, L.G.; Cherouat, A.; Nasri, R. Experimental and numerical study on warm single-point incremental sheet forming (WSPIF) of titanium alloy Ti–6Al–4V, using cartridge heaters. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 534. [Google Scholar] [CrossRef]
- Honarpisheh, M.; Abdolhoseini, M.J.; Amini, S. Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int. J. Adv. Manuf. Technol. 2016, 83, 2027–2037. [Google Scholar] [CrossRef]
- Kumar, N.; Agrawal, A.; Belokar, R.M.; Kausshal, N. Finite element analysis of heat assisted incremental sheet forming process. Adv. Mater. Process. Technol. 2022, 1–9. [Google Scholar] [CrossRef]
- ASTM E21-20; Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- Optical Strain Measuring System GOM ARGUS/ARAMIS. Available online: https://www.ibf.rwth-aachen.de/go/id/rkcr/lidx/1 (accessed on 16 May 2024).
- GOM Argus. Available online: https://www.tugraz.at/en/arbeitsgruppen/lft/research/research/3d-component-digitisation (accessed on 18 May 2024).
- ABAQUS Analysis User’s Manual. Elements Library; Dassault Systèmes: Vélizy-Villacoublay, France, 2016. [Google Scholar]
- Li, W.; Shu, C.; Hassan, A.; Attallah, M.M.; Essa, K. Application of machine learning on tool path optimisation and cooling lubricant in induction heating-assisted single point incremental sheet forming of Ti-6Al-4V sheets. Int. J. Adv. Manuf. Technol. 2022, 123, 821–838. [Google Scholar] [CrossRef]
- Ramasamy, M.; Moorthy, E.S.; Kumaran, P.K.S.; Rangasamy, A.P. Experimental and finite element analysis of titanium based medial tibial condyle using incremental sheet metal forming. Indian J. Eng. Mater. Sci. 2021, 28, 502–508. [Google Scholar]
- Sakhtemanian, M.R.; Amini, S.; Honarpisheh, M. Simulation and investigation of mechanical and geometrical properties of St/CP-Titanium bimetal sheet during the single point incremental forming Process. Iranian J. Mater. Form. 2018, 5, 1–18. [Google Scholar]
- Fan, G.; Sun, F.; Meng, X.; Gao, L.; Tong, G. Electric hot incremental forming of Ti–6Al–4V titanium sheet. Int. J. Adv. Manuf. Technol. 2010, 49, 941–947. [Google Scholar] [CrossRef]
- He, S.; Van Bael, A.; Van Houtte, P.; Tunckol, Y.; Duflou, J.; Henrard, C.; Bouffioux, C.; Habraken, A.M.; Banabic, D. Effect of FEM choices in the modelling of incremental forming of aluminium sheets. In Proceedings of the 8th Esaform Conference on Material Forming ESAFORM, Cluj-Napoca, Romania, 27–29 April 2005; pp. 711–714. [Google Scholar]
- Gatea, S.; Ou, H.; Lu, B.; McCartney, G. Modelling of ductile fracture in single point incremental forming using a modified GTN model. Eng. Fract. Mech. 2017, 186, 59–79. [Google Scholar] [CrossRef]
- Sbayti, M.; Bahloul, R.; Belhadjsalah, H. Numerical modeling of hot incremental forming process for biomedical application. In Design and Modeling of Mechanical Systems—III. CMSM 2017. Lecture Notes in Mechanical Engineering; Haddar, M., Chaari, F., Benamara, A., Chouchane, M., Karra, C., Aifaoui, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 881–891. [Google Scholar]
- Decultot, N. Formage Incrémental de Tôle D’Aluminium: ÉTude du Procédé à L’Aide de la Mesure de Champs ET Identification de Modèles de Comportement; Universite de Toulouse: Toulouse, France, 2011. [Google Scholar]
- Saidi, B.; Boulila, A.; Ayadi, M.; Nasri, R. Prediction of the Friction Coefficient of the Incremental Sheet Forming SPIF. In Proceedings of the 6th International Congress Design and Modelling of Mechanical Systems CMSM’2015, Hammamet, Tunisia, 23–25 March 2015; pp. 1–2. [Google Scholar]
- Szpunar, M.; Szawara, P.; Myśliwiec, P.; Ostrowski, R. Influence of input parameters on the coefficient of friction during incremental sheet forming of Grade 5 titanium alloy. Adv. Mech. Mater. Eng. 2023, 40, 113–123. [Google Scholar] [CrossRef]
- Jurkowski, S.; Janisz, K. Analiza wpływu parametrów siatki obliczeniowej na wynik symulacji przepływomierza. Autobusy 2019, 12, 129–134. [Google Scholar]
- Choi, H.G.; Byun, Y.I.; Song, C.K.; Jun, M.B.G.; Lee, C.; Kim, S. A solution procedure to improve 3D solid finite element analysis with an enrichment scheme. Appl. Sci. 2023, 13, 7114. [Google Scholar] [CrossRef]
- Al-Ghamdi, K.A.; Hussain, G. Forming forces in incremental forming of a geometry with corner feature: Investigation into the effect of forming parameters using response surface approach. Int. J. Adv. Manuf. Technol. 2015, 76, 2185–2197. [Google Scholar] [CrossRef]
- Durante, M.; Formisano, A.; Langella, A.; Minutolo, F.M.C. The influence of tool rotation on an incremental forming process. J. Mater. Process. Technol. 2009, 209, 4621–4626. [Google Scholar] [CrossRef]
- Arfa, H.; Bahloul, R.; BelHadjSalah, H. Finite element modelling and experimental investigation of single point incremental forming process of aluminum sheets: Influence of process parameters on punch force monitoring and on mechanical and geometrical quality of parts. Int. J. Mater. Form. 2013, 6, 483–510. [Google Scholar] [CrossRef]
- Baharudin, B.T.H.T.; Azpen, Q.M.; Sulaima, S.; Mustapha, F. Experimental investigation of forming forces in frictional stir incremental forming of aluminum alloy AA6061-T6. Metals 2017, 7, 484. [Google Scholar] [CrossRef]
- Bagudanch, I.; Centeno, G.; Vallellano, C.; Garcia-Romeu, M. Forming force in single point incremental forming under different bending conditions. Procedia Eng. 2013, 63, 354–360. [Google Scholar] [CrossRef]
- Sena, J.I.V.; Lequesne, C.; Duchene, L.; Habraken, A.M.; Valente, R.A.F.; Alves de Sousa, R.J. Single Point Incremental Forming Simulation with Adaptive Remeshing Technique Using Solid-Shell Element. Available online: https://orbi.uliege.be/bitstream/2268/200932/1/Article%20adaptive%20remeshing%20with%20RESS_Draft_Update_Aveiro.pdf (accessed on 19 May 2024).
- Henrard, C.; Bouffioux, C.; Godinas, A.; Habraken, A. Development of a contact model adapted to incremental forming. In Proceedings of the 8th Esaform Conference on Material Forming ESAFORM, Cluj-Napoca, Romania, 27–29 April 2005; pp. 27–29. [Google Scholar]
- Duflou, J.; Tunçkol, T.; Szekeres, A.; Vanherck, P. Experimental study on force measurements for single point incremental forming. J. Mater. Proc. Technol. 2007, 189, 65–72. [Google Scholar] [CrossRef]
- He, S.; Van Baef, A.; Van Houtte, P.; Tunckof, Y.; Duflou, J.; Habraken, A.M. An FEM-Aided Investigation of the Deformation during Single Point Incremental Forming. Available online: https://orbi.uliege.be/bitstream/2268/19617/1/2006_An%20FEM-aided%20investigation%20of%20the%20deformation%20during_He_Habraken.pdf (accessed on 26 April 2024).
Temperature, °C | Yield Stress Rp0.2, MPa | Ultimate Tensile Strength Rm, MPa | Elongation A, % |
---|---|---|---|
20 | 1082 | 1112 | 9.1 |
104 | 916 | 938 | 15.1 |
183 | 819 | 850 | 14.7 |
261 | 751 | 795 | 10.7 |
340 | 682 | 777 | 13.5 |
Mesh Size, mm | Number of Elements | Number of Nodes | Computation Time |
---|---|---|---|
0.5 | 36,659 | 18,362 | 5 h 5 min |
1 | 10,365 | 5215 | 1 h 47 min |
2 | 3271 | 1168 | 42 min |
4 | 1029 | 547 | 22 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzepieciński, T.; Szpunar, M.; Ostrowski, R.; Ziaja, W.; Motyka, M. Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal. Metals 2024, 14, 619. https://doi.org/10.3390/met14060619
Trzepieciński T, Szpunar M, Ostrowski R, Ziaja W, Motyka M. Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal. Metals. 2024; 14(6):619. https://doi.org/10.3390/met14060619
Chicago/Turabian StyleTrzepieciński, Tomasz, Marcin Szpunar, Robert Ostrowski, Waldemar Ziaja, and Maciej Motyka. 2024. "Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal" Metals 14, no. 6: 619. https://doi.org/10.3390/met14060619
APA StyleTrzepieciński, T., Szpunar, M., Ostrowski, R., Ziaja, W., & Motyka, M. (2024). Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal. Metals, 14(6), 619. https://doi.org/10.3390/met14060619