Effects of PVD CrAlN/(CrAlB)N/CrAlN Coating on Pin–Disc Friction Properties of Ti2AlNb Alloys Compared to WC/Co Carbide at Evaluated Temperatures
Abstract
:1. Introduction
2. Coating Deposition and Characterization
2.1. Coating Deposition Procedure
2.2. Characterization
3. Materials and Experiment
3.1. Ti2AlNb Alloys
3.2. Sample Preparation
3.3. Pin–Disc Friction Tests at Evaluated Temperatures
3.4. Experimental Characterization
4. Results and Discussion
4.1. Friction Coefficient and Wear Rate of Ti2AlNb Alloy
4.2. Topography of Worn Ti2AlNb Alloy Surface
4.3. Element Analysis of Worn Ti2AlNb Alloy Surface Rubbed with CrAlN/(CrAlB)N/CrAlN-Coated Carbides
4.4. Element Analysis of Worn Ti2AlNb Alloy Surface Rubbed with Uncoated Carbides
5. Conclusions
- -
- The Ti2AlNb alloy exhibited good antifriction properties at high temperatures. The lowest friction coefficient and wear rate of the Ti2AlNb alloy when it was contacted with the uncoated and CrAlN/(CrAlB)N/CrAlN-coated carbide were all obtained at the high temperature of 600 °C. It was related to the fact that the worn surface of the Ti2AlNb alloy generated an oxidized film, and the surface became smoother when it was rubbed with a tool couple at high temperature.
- -
- Superior antifriction properties of the Ti2AlNb alloy were obtained when it was contacted with the CrAlN/(CrAlB)N/CrAlN-coated carbide. The friction coefficient and wear rate of the Ti2AlNb alloy rubbed with uncoated carbide were increased by 6.12% and 78.95%, 6.81% and 7.69%, and 3.33% and 28.57% compared to that with the CrAlN/(CrAlB)N/CrAlN-coated sample at testing temperature 25 °C, 300 °C, and 600 °C, respectively.
- -
- The apparent adhesive wear and abrasive wear of the Ti2AlNb alloy could be improved due to the PVD CrAlN/(CrAlB)N/CrAlN coating at evaluated temperatures based on the topography and chemical analysis of the worn surface. The wear loss of the CrAlN/(CrAlB)N/CrAlN-coated and uncoated carbide tool couples could be neglected.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.X.; Chang, B.H.; Wang, J.C.; Zhang, H.Y.; Liang, Z.Y.; Liao, Z.Y.; Wang, L.; Liu, C.M.; Du, Y. Dual-droplet transition control for improving forming quality and composition homogenizing in dual-wire additive manufacturing of Ti2AlNb alloy. Int. J. Mach. Tools Manuf. 2024, 195, 104114. [Google Scholar] [CrossRef]
- Zhang, P.H.; Zeng, W.D.; Zhang, F.; Ma, H.Y.; Xu, J.W.; Liang, X.B.; Zhao, Y.Q. Fracture toughness of Ti2AlNb alloy with different Al content: Intrinsic mechanism, extrinsic mechanism and prediction model. J. Alloys Compd. 2023, 952, 170068. [Google Scholar] [CrossRef]
- Kumar, A.; Maurya, A.; Kandadi, V.M.; Mahato, A. Introduction of rolling motion at the tool-tip in metal cutting. Int. J. Mach. Tools Manuf. 2023, 186, 104001. [Google Scholar] [CrossRef]
- Li, Z.; Sui, S.; Ma, X.; Tan, H.; Zhong, C.L.; Bi, G.J.; Clare, A.T.; Gasser, A.; Chen, J. High deposition rate powder- and wire-based laser directed energy deposition of metallic materials: A review. Int. J. Mach. Tools Manuf. 2022, 181, 103942. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Z.; Guo, Y.; Fu, R.; Xu, T.; Liu, C. Homogenizing the composition of in-situ fabricated Ti2AlNb-based alloy via manipulating the droplet transfer mode of twin-wire arc additive manufacturing. J. Alloys Compd. 2022, 923, 165992. [Google Scholar] [CrossRef]
- Senkevich, K.S.; Pozhoga, O.Z.; Kudryavtsev, E.A.; Zasypkin, V.V. The effect of hydrogenation on the fracture of Ti2AlNb-based alloy during ball milling. J. Alloys Compd. 2022, 902, 163794. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Liang, H.; Liu, Y. Influence of cooling rates on microstructure and tensile properties of a heat treated Ti2AlNb-based alloy. Mater. Sci. Eng. A. 2021, 817, 141345. [Google Scholar] [CrossRef]
- Chen, X.; Xie, F.Q.; Ma, T.J.; Li, W.Y.; Wu, X.Q. Microstructural evolution and mechanical properties of linear friction welded Ti2AlNb joint during solution and aging treatment. Mater. Sci. Eng. A 2016, 668, 125–136. [Google Scholar] [CrossRef]
- Grigoriev, A.; Polozov, I.; Sufiiarov, V.; Popovich, A. In-situ synthesis of Ti2AlNb-based intermetallic alloy by selective laser melting. J. Alloys Compd. 2017, 704, 434–442. [Google Scholar] [CrossRef]
- Li, Z.; Cui, Y.; Wang, L.; Zhang, H.; Liang, Z.; Liu, C.; Du, D. An investigation into Ti-22Al-25Nb in-situ fabricated by electron beam freeform fabrication with an innovative twin-wire parallel feeding method. Addit. Manuf. 2022, 50, 102552. [Google Scholar] [CrossRef]
- Abukhshim, N.A.; Mativenga, P.T.; Sheikh, M.A. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int. J. Mach. Tool. Manfu. 2006, 46, 782–800. [Google Scholar] [CrossRef]
- Shalaby, M.A.; Veldhuis, S.C. Wear and tribological performance of different ceramic tools in dry high speed machining of Ni-Co-Cr precipitation hardenable aerospace superalloy. Tribol. Technol. 2019, 62, 62–77. [Google Scholar] [CrossRef]
- Zhao, J.F.; Liu, Z.Q.; Wang, B.; Hu, J.R.; Wan, Y. Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions. Mech. Syst. Signal. Process. 2021, 150, 107302. [Google Scholar] [CrossRef]
- Zhao, J.F.; Liu, Z.Q.; Wang, Q.Q.; Jiang, J.M. Measurement of temperature-dependent thermal conductivity for PVD Ti0.55Al0.45N ceramic coating by time domain thermo-reflectance method. Ceram. Int. 2019, 45, 8123–8129. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Z.R.; Axinte, D. Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale. Int. J. Mach. Tool. Manuf. 2020, 159, 103620. [Google Scholar] [CrossRef]
- Liao, Z.R.; Monaca, A.; Murray, J.; Speidel, A.; Ushmaev, D.; Clare, A.; Axinte, D.; M’Saoubi, R. Surface integrity in metal machining-Part I: Fundamentals of surface characteristics and formation mechanisms. Int. J. Mach. Tools Manuf. 2021, 162, 103687. [Google Scholar] [CrossRef]
- Monaca, A.; Murray, J.W.; Liao, Z.R.; Speidel, A.; Robles-Linares, J.A.; Axinte, D.A.; Hardy, M.C.; Clare, A.T. Surface integrity in metal machining-Part II: Functional performance. Int. J. Mach. Tools Manuf. 2021, 164, 103718. [Google Scholar] [CrossRef]
- Yuan, Z.J.; Gao, G.F.; Wang, Y.; Fu, Z.X.; Xiang, D.H. Correction to: Experimental study on a two-dimensional ultrasonic vibration platform and milling of Ti2AlNb intermetallic alloy. Int. J. Adv. Manuf. Tech. 2022, 122, 2793. [Google Scholar] [CrossRef]
- Li, C.X.; Xia, J.; Dong, H. Sliding wear of TiAl intermetallics against steel and ceramics of Al2O3, Si3N4 and WC/Co. Wear 2006, 261, 693–701. [Google Scholar] [CrossRef]
- Alam, M.O.; Haseeb, A.S.M.A. Response of Ti-6Al-4V and Ti-24Al-11Nb alloys to dry sliding wear against hardened steel. Tribol. Int. 2002, 35, 357. [Google Scholar] [CrossRef]
- Rastkar, A.R.; Bloyce, A.; Bell, T. Sliding wear behaviour of two gamma-based titanium aluminides. Wear. 2000, 240, 19–26. [Google Scholar] [CrossRef]
- Zambrano Carrullo, J.C.; Pereira Falcón, J.C.; Amigó Borrás, V. Influence of process parameters and initial microstructure on the oxidation resistance of Ti48Al2Cr2Nb coating obtained by laser metal deposition. Surf. Coat. Technol. 2019, 358, 114–124. [Google Scholar] [CrossRef]
- Weller, M.; Chatterjee, A.; Haneczok, G.; Clemens, H. Internal friction of γ-TiAl alloys at high temperature. J. Alloys Compd. 2000, 310, 134–138. [Google Scholar] [CrossRef]
- Cheng, J.; Li, F.; Qiao, Z.H.; Zhu, S.Y.; Yang, J.; Liu, W.M. The role of oxidation and counterface in the high temperature tribological properties of TiAl intermetallics. Mater. Des. 2015, 84, 245–253. [Google Scholar] [CrossRef]
- Nuo, C.; Xiao, H.Q.; Zhao, X.X.; Ren, L.R.; Tian, Y.X.; Zhou, X. Friction and wear behaviour of laser-cladded TiAl coating on TC4 substrate from room temperature to 800 °C. JOM 2023, 75, 3285–3293. [Google Scholar]
- Wang, W.; Zhou, H.H.; Wang, Q.J.; Jin, J.; Sun, Y.L.; Wang, K.S. High-temperature tribological behaviour of the Ti-22Al-25Nb (at.%) orthorhombic alloy with lamellar O microstructures. Metals 2018, 9, 5. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, G.F.; Zhang, K.; Wang, Y.; Wang, X.B.; Xiang, D.H. Modelling of tribological behavior and wear for micro-textured surfaces of Ti2AlNb intermetallic compounds machined with multi-dimensional ultrasonic vibration assistance. Tribol. Int. 2024, 191, 109167. [Google Scholar] [CrossRef]
- Bobzin, K.; Kalscheuer, C.; Carlet, M.; Schmauder, S.; Guski, V.; Verestek, W.; Tayyab, M. 3D deformation modeling of CrAlN coated tool steel compound during nanoindentation. Surf. Coat. Technol. 2021, 453, 129148. [Google Scholar] [CrossRef]
- Bobzin, K.; Kalscheuer, C.; Möbius, M.P. Triboactive CrAlN+MoWS coatings deposited by pulsed arc PVD. Surf. Coat. Technol. 2023, 475, 130178. [Google Scholar] [CrossRef]
- Hu, C.; Chen, L.; Moraes, V. Structure, mechanical properties, thermal stability and oxidation resistance of arc evaporated CrAlBN coatings. Surf. Coat. Technol. 2021, 417, 127191. [Google Scholar] [CrossRef]
- Kim, S.K.; Le, V.V. Deposition of nanolayered CrN/AlBN thin films by cathodic arc deposition: Influence of cathode arc current and bias voltage on the mechanical properties. Surf. Coat. Technol. 2010, 204, 3941–3946. [Google Scholar] [CrossRef]
- Dai, Y.; Li, K.M.; Xiang, Q.; Ou, M.G.; Yang, F.; Liu, J. Microstructure and tribology behaviors of WC coating fabricated by surface mechanical composite strengthening. Appl. Surf. Sci. 2023, 619, 156759. [Google Scholar] [CrossRef]
- Li, M.S.; Jiang, Q.Y.; Fan, Y.Z.; Wang, R.D. Structure and mechanical properties of (CrAl)N and (CrAlSiY) N coating prepared by asymmetrical bipolar DC magnetron sputtering. AER-Adv. Eng. Res. 2016, 85, 1054–1060. [Google Scholar]
- Liu, X.L.; Lin, Z.; Zhao, H.J.; Sun, F. Study on microstructure, mechanical properties, tribological properties and service performance of CrAlN and CrAlBN coatings deposited on powder metallurgy high-speed steel (PM-HSS) and shaper cutter by arc ion plating technique. Coatings 2024, 14, 486. [Google Scholar] [CrossRef]
- Drnovšek, A.; Kukuruzovič, D.; Terek, P.; Miletić, A.; Čekada, M.; Panjan, M.; Panjan, P. Microstructural, mechanical and oxidation resistance of nanolayer sputter-deposited CrAlN hard coatings. Coatings 2023, 13, 2096. [Google Scholar] [CrossRef]
- Chen, W.L.; Hu, T.; Hong, Y.; Zhang, D.D.; Meng, X. Comparison of microstructures, mechanical and tribological properties of arc-deposited AlCrN, AlCrBN and CrBN coatings on Ti-6Al-4V alloy. Surf. Coat. Technol. 2020, 404, 126429. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yan, N.; Liang, H.Y.; Liu, Y.C. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review. J. Mater. Sci. Technol. 2021, 80, 203–216. [Google Scholar] [CrossRef]
- Cheng, F.; Lin, J.; Liang, Y. Friction and wear properties of a high Nb-containing TiAl alloy against WC-8Co, Si3N4, and GCr15 in an unlubricated contact. Intermetallics 2019, 106, 7–12. [Google Scholar] [CrossRef]
Coating Structure | Coating Thickness | Nano-Hardness HIT | E* | Lc1 | Lc2 |
---|---|---|---|---|---|
B1 NaCl | 2.78 μm | 24.75 GPa | 439.14 | 82.36 N | 127.29 N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zheng, L.; Li, W.; Liu, Z.; Li, L.; Wang, B.; Cai, Y.; Ren, X.; Liang, X. Effects of PVD CrAlN/(CrAlB)N/CrAlN Coating on Pin–Disc Friction Properties of Ti2AlNb Alloys Compared to WC/Co Carbide at Evaluated Temperatures. Metals 2024, 14, 662. https://doi.org/10.3390/met14060662
Zhao J, Zheng L, Li W, Liu Z, Li L, Wang B, Cai Y, Ren X, Liang X. Effects of PVD CrAlN/(CrAlB)N/CrAlN Coating on Pin–Disc Friction Properties of Ti2AlNb Alloys Compared to WC/Co Carbide at Evaluated Temperatures. Metals. 2024; 14(6):662. https://doi.org/10.3390/met14060662
Chicago/Turabian StyleZhao, Jinfu, Lirui Zheng, Wenqian Li, Zhanqiang Liu, Liangliang Li, Bing Wang, Yukui Cai, Xiaoping Ren, and Xiaoliang Liang. 2024. "Effects of PVD CrAlN/(CrAlB)N/CrAlN Coating on Pin–Disc Friction Properties of Ti2AlNb Alloys Compared to WC/Co Carbide at Evaluated Temperatures" Metals 14, no. 6: 662. https://doi.org/10.3390/met14060662
APA StyleZhao, J., Zheng, L., Li, W., Liu, Z., Li, L., Wang, B., Cai, Y., Ren, X., & Liang, X. (2024). Effects of PVD CrAlN/(CrAlB)N/CrAlN Coating on Pin–Disc Friction Properties of Ti2AlNb Alloys Compared to WC/Co Carbide at Evaluated Temperatures. Metals, 14(6), 662. https://doi.org/10.3390/met14060662