Influence of Process Parameters on the Mechanical Properties and Corrosion Resistance of Dissimilar Friction Stir Welded Joints of AA2024-O and AA6061-O Aluminum Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Welded Joints
2.3. Experimental Sample Extraction
2.4. Macro and Microstructural Analysis
2.5. X-ray Diffraction
2.6. Hardness Measurements
2.7. Tensile Test
2.8. Corrosion Tests
3. Results and Discussion
3.1. Microstructure and Welding Results
3.2. Thermal and Process Parameters Analysis
3.3. Microhardness and Tensile Test Results
3.4. Corrosion Results Analysis
4. Conclusions
- The increasing rotational speed influenced the flow pattern at the stir region, producing a tendency to refinement of grain and a higher homogeneous mixture between base metals, which affected corrosion and mechanical properties.
- Peak temperature, torque, and heat input were correlated to rotational speed, and the plasticizer heats more than the (ω/υ) ratio. Evaluated experimental welding conditions in this work showed that HH conditions (1200 rpm) and LL conditions (640 rpm) displayed similar (ω/υ) ratio values. Still, the first set displayed a wider and homogeneous mixture stir region.
- The hardness measurements in the stir region were higher for HH conditions (1200 rpm) because of the tendency to grain refinement and higher mixture between base metals. Little differences in (ω/υ) ratio values could explain the scarce differences between tensile properties of HH and LL conditions via increasing.
- The corrosion behavior of AA6061-O/AA2024-O FSW dissimilar welded joints was highly influenced by pattern flow, i.e., by homogenization of the mixture and the tendency to refinement of grain in the stir region. The higher rotational speed displayed a more homogenized mixture and tendency to grain refinement, producing narrower and finer corroded regions in the stir region due to the high dissolution area’s effect associated with the presence of AA6061-O.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, W.M.; Nicholas, E.D.; Needham, J.C.; Murch, M.G.; Temple-Smith, P.; Dawes, C.J. Friction Stir Butt Welding. U.S. International Patent No. PCT/GB92/02203, 6 December 1991. [Google Scholar]
- Bhardwaj, N.; Narayanan, R.G.; Dixit, U.; Hashmi, M. Recent developments in friction stir welding and resulting industrial practices. Adv. Mater. Process. Technol. 2019, 5, 461–496. [Google Scholar] [CrossRef]
- Soori, M.; Asmael, M.; Solyalı, D. Recent development in friction stir welding process: A review. SAE Int. J. Mater. Manuf. 2020, 14, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Isa, M.S.M.; Moghadasi, K.; Ariffin, M.A.; Raja, S.; bin Muhamad, M.R.; Yusof, F.; Jamaludin, M.F.; bin Yusoff, N.; bin Ab Karim, M.S. Recent research progress in friction stir welding of aluminium and copper dissimilar joint: A review. J. Mater. Res. Technol. 2021, 15, 2735–2780. [Google Scholar] [CrossRef]
- Rudrapati, R. Recent advances in joining of aluminum alloys by using friction stir welding. In Mass Production Processes; IntechOpen: London, UK, 2019. [Google Scholar]
- Chen, G.; Zhang, S.; Zhu, Y.; Yang, C.; Shi, Q. Thermo-mechanical analysis of friction stir welding: A review on recent advances. Acta Met. Sin. 2020, 33, 3–12. [Google Scholar] [CrossRef]
- Soto-Díaz, R.; Sandoval-Amador, A.; Unfried-Silgado, J. Experimental evaluation of rotational and traverse speeds effects on corrosion behavior of friction stir welded joints of aluminum alloy AA5052-H32. Int. J. Adv. Manuf. Technol. 2021, 115, 3213–3223. [Google Scholar] [CrossRef]
- Du, C.; Pan, Q.; Chen, S.; Tian, S. Effect of rolling on the microstructure and mechanical properties of 6061-T6 DS-FSW plate. Mater. Sci. Eng. A 2020, 772, 138692. [Google Scholar] [CrossRef]
- Moreto, J.; dos Santos, M.; Ferreira, M.; Carvalho, G.; Gelamo, R.; Aoki, I.; Taryba, M.; Filho, W.B.; Fernandes, J. Corrosion and corrosion-fatigue synergism on the base metal and nugget zone of the 2524-T3 Al alloy joined by FSW process. Corros. Sci. 2021, 182, 109253. [Google Scholar] [CrossRef]
- Montes-González, F.A.; Rodríguez-Rosales, N.A.; Ortiz-Cuellar, J.C.; Muñiz-Valdez, C.R.; Gómez-Casas, J.; Galindo-Valdés, J.S.; Gómez-Casas, O. Experimental Analysis and Mathematical Model of FSW Parameter Effects on the Corrosion Rate of Al 6061-T6-Cu C11000 Joints. Crystals 2021, 11, 294. [Google Scholar] [CrossRef]
- Patel, V.; Li, W.; Vairis, A.; Badheka, V. Recent development in friction stir processing as a solid-state grain refinement technique: Microstructural evolution and property enhancement. Crit. Rev. Solid State Mater. Sci. 2019, 44, 378–426. [Google Scholar] [CrossRef]
- Wang, P.-J.; Ma, L.-W.; Cheng, X.-Q.; Li, X.-G. Influence of grain refinement on the corrosion behavior of metallic materials: A review. Int. J. Miner. Met. Mater. 2021, 28, 1112–1126. [Google Scholar] [CrossRef]
- Sivaraj, P.; Hariprasath, P.; Rajarajan, C.; Balasubramanian, V. Analysis of grain refining and subsequent coarsening along on adjacent zone of friction stir welded armour grade aluminium alloy joints. Mater. Res. Express 2019, 6, 066566. [Google Scholar] [CrossRef]
- Cai, W.; Daehn, G.; Vivek, A.; Li, J.; Khan, H.; Mishra, R.S.; Komarasamy, M. A state-of-the-art review on solid-state metal joining. J. Manuf. Sci. Eng. 2019, 141, 031012. [Google Scholar] [CrossRef]
- Heidarzadeh, A.; Mironov, S.; Kaibyshev, R.; Çam, G.; Simar, A.; Gerlich, A.; Khodabakhshi, F.; Mostafaei, A.; Field, D.; Robson, J.; et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Prog. Mater. Sci. 2021, 117, 100752. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Ataya, S.; Seleman, M.M.E.S.; Allam, T.; Alsaleh, N.A.; Ahmed, E. Grain structure, crystallographic texture, and hardening behavior of dissimilar friction stir welded aa5083-o and aa5754-h14. Metals 2021, 11, 181. [Google Scholar] [CrossRef]
- Jacquin, D.; Guillemot, G. A review of microstructural changes occurring during FSW in aluminium alloys and their modelling. J. Am. Acad. Dermatol. 2021, 288, 116706. [Google Scholar] [CrossRef]
- Janeczek, A.; Tomków, J.; Fydrych, D. The influence of tool shape and process parameters on the mechanical properties of AW-3004 aluminium alloy friction stir welded joints. Materials 2021, 14, 3244. [Google Scholar] [CrossRef] [PubMed]
- Vimalraj, C.; Kah, P. Experimental review on friction stir welding of aluminium alloys with nanoparticles. Metals 2021, 11, 390. [Google Scholar] [CrossRef]
- Xue, X.; Wu, X.; Liao, J. Hot-cracking susceptibility and shear fracture behavior of dissimilar Ti6Al4V/AA6060 alloys in pulsed Nd: YAG laser welding. Chin. J. Aeronaut. 2021, 34, 375–386. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, W.; Feng, J.; Lu, G.; Zhu, R.; Li, Y. A Review of the Friction Stir Welding of Dissimilar Materials between Aluminum Alloys and Copper. Metals 2022, 12, 675. [Google Scholar] [CrossRef]
- Adamus, K.; Lacki, P. Assessment of Aluminum FSW Joints Using Ultrasonic Testing. Arch. Met. Mater. 2017, 62, 2399–2404. [Google Scholar] [CrossRef]
- Lacki, P.; Derlatka, A. Experimental and numerical investigation of aluminium lap joints made by RFSSW. Meccanica 2016, 51, 455–462. [Google Scholar] [CrossRef]
- Lacki, P.; Derlatka, A.; Więckowski, W.; Adamus, J. Development of FSW Process Parameters for Lap Joints Made of Thin 7075 Aluminum Alloy Sheets. Materials 2024, 17, 672. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, R.K.; Sharma, D. Green welding for various similar and dissimilar metals and alloys: Present status and future possibilities. Adv. Compos. Hybrid Mater. 2019, 2, 389–406. [Google Scholar] [CrossRef]
- ShivaKumar, G.N.; Rajamurugan, G. Friction stir welding of dissimilar alloy combinations—A Review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 6688–6705. [Google Scholar] [CrossRef]
- Battina, N.M.R.; Vanthala, V.S.P.; Chirala, H.K. Effect of friction stir welding process parameters on mechanical and metallurgical behavior of AA6061-T6 and AA2017-T6 tailored blanks. Eng. Res. Express 2021, 3, 025043. [Google Scholar] [CrossRef]
- Al-Sabur, R. Tensile strength prediction of aluminium alloys welded by FSW using response surface methodology—Comparative review. Mater. Today Proc. 2021, 45, 4504–4510. [Google Scholar] [CrossRef]
- Sindhuja, M.; Neelakrishnan, S.; Davidson, B.S. Effect of Welding Parameters on Mechanical Properties of Friction Stir Welding of Dissimilar Metals—A Review. IOP Conf. Series Mater. Sci. Eng. 2021, 1185, 012019. [Google Scholar] [CrossRef]
- Verma, S.; Misra, J.P. Experimental investigation on friction stir welding of dissimilar aluminium alloys. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2021, 235, 1545–1554. [Google Scholar] [CrossRef]
- Paidar, M.; Vignesh, R.V.; Khorram, A.; Ojo, O.O.; Rasoulpouraghdam, A.; Pustokhina, I. Dissimilar modified friction stir clinching of AA2024-AA6061 aluminum alloys: Effects of materials positioning. J. Mater. Res. Technol. 2020, 9, 6037–6047. [Google Scholar] [CrossRef]
- Kumar, R.; Salah, A.N.; Kant, N.; Singh, P.; Hashmi, A.W.; Malla, C. Effect of FSW process parameters on mechanical properties and microstructure of dissimilar welded joints of AA2024 and AA6082. Mater. Today Proc. 2022, 50, 1435–1441. [Google Scholar] [CrossRef]
- Mohapatra, D.K.; Mohanty, P.P. Parametric Studies of Dissimilar Friction Stir Welded AA2024/AA6082 Aluminium Alloys. In Recent Advances in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2023; pp. 191–200. [Google Scholar]
- Nalla Mohamed, M.; Sivaprasad, R. An Efficient Energy Absorber Based on Welded Fold Tubes for Automotive Applications. Trends Mech. Biomed. Des. Sel. Proc. ICMechD 2021, 2019, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Elyasi, M.; Modanloo, V. Assessment of Energy Absorption and Crushing Performance of Perforated Thin-Walled AA6061-O Tubes with Irregular Holes Under Axial Compression Loading. Arab. J. Sci. Eng. 2024, 49, 1–12. [Google Scholar] [CrossRef]
- Tiwan, H.; Ilman, M.N.; Kusmono, K. Effect of Pin Geometry and Tool Rotational Speed on Microstructure and Mechanical Properties of Friction Stir Spot Welded Joints in AA2024-O Aluminum Alloy. Int. J. Eng. 2021, 34, 1949–1960. [Google Scholar] [CrossRef]
- Forouzesh, M.; Kazeminezhad, M. On the solution treatment of severely deformed AA2024-O and subsequent natural aging. J. Mater. Res. Technol. 2022, 20, 1558–1569. [Google Scholar] [CrossRef]
- İpekoğlu, G.; Erim, S.; Kıral, B.G.; Çam, G. Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates. Kovove Mater. 2013, 51, 155–163. [Google Scholar] [CrossRef]
- El-Deeb, M.S.S.; Khorshed, L.A.; Abdallah, S.A.; Gaafer, A.M.; Mahmoud, T.S. Effect of friction stir welding process parameters and post-weld heat treatment on the corrosion behaviour of AA6061-O aluminum alloys. Egypt. J. Chem. 2019, 62, 1367–1375. [Google Scholar] [CrossRef]
- Karmanov, V.V.; Kameneva, A.L. Dependence of the microstructure and microhardness of the AA2024-O alloy on the thermal and mechanical action on the weld during friction stir welding. IOP Conf. Series Mater. Sci. Eng. 2018, 447, 012058. [Google Scholar] [CrossRef]
- Wang, P.; Gebert, A.; Yan, L.; Li, H.; Lao, C.; Chen, Z.; Kosiba, K.; Kuehn, U.; Scudino, S. Corrosion of Al-3.5Cu-1.5 Mg-1Si alloy prepared by selective laser melting and heat treatment. Intermetallics 2020, 124, 106871. [Google Scholar] [CrossRef]
- López-Fernández, J.; Centeno, G.; Vallellano, C. Wrinkling in shrink flanging by single point incremental forming. Int. J. Mech. Sci. 2023, 240, 107930. [Google Scholar] [CrossRef]
- Moradi, M.M.; Aval, H.J.; Jamaati, R. Effect of pre and post welding heat treatment in SiC-fortified dissimilar AA6061-AA2024 FSW butt joint. J. Manuf. Process. 2017, 30, 97–105. [Google Scholar] [CrossRef]
- Maji, P.; Nath, R.K.; Karmakar, R.; Paul, P.; Meitei, R.B.; Ghosh, S.K. Effect of post processing heat treatment on friction stir welded/processed aluminum based alloys and composites. CIRP J. Manuf. Sci. Technol. 2021, 35, 96–105. [Google Scholar] [CrossRef]
- Laska, A.; Szkodo, M.; Koszelow, D.; Cavaliere, P. Effect of Processing parameters on strength and corrosion resistance of friction stir-welded AA6082. Metals 2022, 12, 192. [Google Scholar] [CrossRef]
- Machado, C.d.S.C.; Donatus, U.; Milagre, M.X.; Araujo, J.V.d.S.; de Viveiros, B.V.G.; Klumpp, R.E.; Pereira, V.F.; Costa, I. How microstructure affects localized corrosion resistance of stir zone of the AA2198-T8 alloy after friction stir welding. Mater. Charact. 2021, 174, 111025. [Google Scholar] [CrossRef]
- Jandaghi, M.R.; Pouraliakbar, H.; Saboori, A.; Hong, S.I.; Pavese, M. Comparative insight into the interfacial phase evolutions during solution treatment of dissimilar friction stir welded AA2198-AA7475 and AA2198-AA6013 aluminum sheets. Materials 2021, 14, 1290. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, A.; Gopi, S.; Mohan, D.G. Effect of welding speed on mechanical properties and corrosion resistance rates of filler induced friction stir welded AA6082 and AA5052 joints. Mater. Res. Express 2021, 8, 066531. [Google Scholar] [CrossRef]
- Arbegast, W.J. A flow-partitioned deformation zone model for defect formation during friction stir welding. Scr. Mater. 2008, 58, 372–376. [Google Scholar] [CrossRef]
- Gencer, G.M.; Oztoprak, N.; Serindag, H.T. Comparative experimental study on the modification of microstructural and mechanical properties of friction stir welded and gas metal arc welded EN AW-6061 O aluminum alloys by post-weld heat treatment. Mater. Werkst. 2018, 49, 1059–1067. [Google Scholar] [CrossRef]
- Takhakh, A.M. Formability of Friction Stir Welded and Processed AA 2024–O Aluminum Alloy Sheets. Adv. Nat. Appl. Sci. 2016, 11, 10. [Google Scholar]
- Chanakyan, C.; Sivasankar, S.; Alagarsamy, S.; Kumar, S.D.; Sakthivelu, S.; Meignanamoorthy, M.; Ravichandran, M. Parametric optimization for friction stir welding with AA2024 and AA6061 aluminium alloys by ANOVA and GRG. Mater. Today Proc. 2020, 27, 707–711. [Google Scholar] [CrossRef]
- Sadeesh, P.; Kannan, M.V.; Rajkumar, V.; Avinash, P.; Arivazhagan, N.; Ramkumar, K.D.; Narayanan, S. Studies on Friction Stir Welding of AA 2024 and AA 6061 Dissimilar Metals. Procedia Eng. 2014, 75, 145–149. [Google Scholar] [CrossRef]
- Jagathesh, K.; Jenarthanan, M.; Babu, P.D.; Chanakyan, C. Analysis of factors influencing tensile strength in dissimilar welds of AA2024 and AA6061 produced by Friction Stir Welding (FSW). Aust. J. Mech. Eng. 2015, 15, 19–26. [Google Scholar] [CrossRef]
- Devaraju, A.; Shalem, M.J.; Manichandra, B. Effect of rotation speed on tensile properties & microhardness of dissimilar Al alloys 6061-T6 to 2024 -T6 welded via solid state joining technique. Mater. Today Proc. 2019, 18, 3286–3290. [Google Scholar] [CrossRef]
- Devaraj, J.; Ziout, A.; Abu Qudeiri, J.E. Dissimilar non-ferrous metal welding: An insight on experimental and numerical analysis. Metals 2021, 11, 1486. [Google Scholar] [CrossRef]
- ASTM E8/E8M-22; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: Conshohocken, PA, USA, 2022; pp. 1–12. Available online: https://www.astm.org/e0008_e0008m-22.html (accessed on 15 May 2024).
- ASTM E3-11; Standard Guide for Preparation of Metallographic Specimens. American Society for Testing and Materials United States of America: Conshohocken, PA, USA, 2017.
- ASTM. Standard test method for microindentation hardness of materials. ASTM Int. 2017, 384, 1–40. [Google Scholar]
- ASTM G69-20; Standard Test Method for Measurement of Corrosion Potentials of Aluminum Alloys. ASTM: Conshohocken, PA, USA, 2020; pp. 1–3. Available online: https://www.astm.org/g0069-20.html (accessed on 15 May 2024).
- ASTM G5-14; Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements. ASTM: Conshohocken, PA, USA, 2014.
- Oztoprak, N.; Yeni, C.E.; Kiral, B.G. Effects of post-weld heat treatment on the microstructural evolution and mechanical properties of dissimilar friction stir welded AA6061+SiCp/AA6061-O joint. Lat. Am. J. Solids Struct. 2018, 15, e49. [Google Scholar] [CrossRef]
- Arsyad, H.; Arma, L.H. The Roughness Characteristic of AA6061-F, AA6061-O and AA6061-T6 after Machining Process. IOP Conf. Ser. Mater. Sci. Eng. 2020, 875, 012057. [Google Scholar] [CrossRef]
- Wang, P.; Lei, Y.; Qi, J.F.; Yu, S.J.; Setchi, R.; Wu, M.W.; Eckert, J.; Li, H.C.; Scudino, S. Wear behavior of a heat-treatable al-3.5 cu-1.5 mg-1Si alloy manufactured by selective laser melting. Materials 2021, 14, 7048. [Google Scholar] [CrossRef]
- Ilman, M.N. Microstructure and mechanical performance of dissimilar friction stir spot welded AA2024-O/AA6061-T6 sheets: Effects of tool rotation speed and pin geometry. Int. J. Light. Mater. Manuf. 2023, 6, 1–14. [Google Scholar] [CrossRef]
- Dialami, N.; Cervera, M.; Chiumenti, M. Defect formation and material flow in Friction Stir Welding. Eur. J. Mech.—A/Solids 2020, 80, 103912. [Google Scholar] [CrossRef]
- Kumar, K.; Kailas, S.V. The role of friction stir welding tool on material flow and weld formation. Mater. Sci. Eng. A 2008, 485, 367–374. [Google Scholar] [CrossRef]
- Rajendran, C.; Abdulriyazdeen, A.; Abishek, S.; Aatheeshwaran, A.; Akash, A. Prediction of relationship between angular velocity to the pitch line velocity (ω/v) on tensile strength of friction stir welded AA2014-T6 aluminium alloy joints: Angular velocity to pitch line velocity ratio on FSW joints. Forces Mech. 2021, 4, 100036. [Google Scholar]
- Asadi, P.; Aliha, M.; Akbari, M.; Imani, D.; Berto, F. Multivariate optimization of mechanical and microstructural properties of welded joints by FSW method. Eng. Fail. Anal. 2022, 140, 106528. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, W.; Li, Y.; Gong, W.; Ju, C. The Influence of Tool Shape on Plastic Metal Flow, Microstructure and Properties of Friction Stir Welded 2024 Aluminum Alloy Joints. Metals 2022, 12, 408. [Google Scholar] [CrossRef]
- Cavaliere, P.; De Santis, A.; Panella, F.; Squillace, A. Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Mater. Des. 2009, 30, 609–616. [Google Scholar] [CrossRef]
- Nam, N.; Dai, L.; Mathesh, M.; Bian, M.; Thu, V. Role of friction stir welding—Traveling speed in enhancing the corrosion resistance of aluminum alloy. Mater. Chem. Phys. 2016, 173, 7–11. [Google Scholar] [CrossRef]
- Kang, J.; Fu, R.-D.; Luan, G.-H.; Dong, C.-L.; He, M. In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminium alloy. Corros. Sci. 2010, 52, 620–626. [Google Scholar] [CrossRef]
- Nisancioglu, K.; Holtan, H. Measurement of the critical pitting potential of aluminium. Corros. Sci. 1978, 18, 835–849. [Google Scholar] [CrossRef]
- Vikas, K.S.R.; Ramana, V.V.; Mohammed, R.; Reddy, G.M.; Rao, K. Influence of post weld heat treatment on microstructure and pitting corrosion behavior of dissimilar aluminium alloy friction stir welds. Mater. Today Proc. 2019, 15, 109–118. [Google Scholar] [CrossRef]
Base Material | vs (mm∙min−1) | w (rpm) | Tool Geometry | Soundness | Reference |
---|---|---|---|---|---|
AA6061-O | 150–400 | 750–1500 | Cylindrical pin | No defects | [38] |
150 | 1750 | Cylindrical threaded | No defects | [50] | |
AA2024-O | 300 | 300 | Conical threaded pin | No defects | [40] |
40 | 1250 | Taper cylindrical | No defects | [51] | |
AA6061–AA2024 | 31.5–40 | 800–2000 | Square frustum probe | No defects | [43] |
35–65 * | 500–1200 | Conical pin | No defects | [52] | |
28 | 710 | Taper cylindrical | No defects | [53] | |
40 | 1000 | Taper cylindrical | No defects | [54] | |
40 | 500 | Conical | No defects | [55] | |
40 | 900–1400 | Conical | No defects | [56] |
Chemical Composition (wt.%) | |||||||
---|---|---|---|---|---|---|---|
Material | Al | Si | Fe | Cu | Mn | Mg | Others |
AA2024-O | Bal. | 0.099 | 0.095 | 4.672 | 0.445 | 1.627 | 0.011 |
AA6061-O | Bal. | 0.561 | 0.366 | 0.187 | 0.067 | 0.848 | 0.241 |
Identification Welding Samples | Traverse Speed (mm∙min−1) | Rotational Speed (rpm) | Pin Shape | Shoulder Diameter Ø (mm) | Pin Length (mm) | Tool Tilt Angle (°) |
---|---|---|---|---|---|---|
HH | 65 | 1200 | Truncated cone | 22 | 4.54 | 2 |
LL | 45 | 840 |
Condition | Rotational Speed (rpm) | Traverse Speed (mm∙min−1) | ω/υ Ratio | Peak of Temperature (°C) | Torque (N∙m) | Heat Input (kJ∙mm−1) | |
---|---|---|---|---|---|---|---|
Adv. | Ret. | ||||||
HH | 1200 | 65 | 18.5 | 313 | 272.2 | 46 | 5.33 |
LL | 840 | 45 | 18.7 | 464.3 | 309 | 53.5 | 6.27 |
Welding Conditions | Tensile Strength Su (MPa) | Yield Strength Sy (MPa) | Elongation e (%) | Tendency of Grain Size |
---|---|---|---|---|
AA6061-O | 124.0 ± 6.2 | 62.0 ± 3.1 | 25.0 ± 1.3 | Coarsening |
AA2024-O | 183.0 ± 9.2 | 89.6 ± 4.5 | 20.0 ± 1.0 | Coarsening |
HH (65–1200) | 126.6 ± 6.3 | 44.5 ± 2.2 | 14.9 ± 0.7 | Refinement |
LL (45–840) | 131.4 ± 6.6 | 42.0 ± 2.1 | 17.0 ± 0.9 | Average |
Sample | Ecorr (mV) | Icorr (A∙cm−2) | Corr. Rate (mm per Year) |
---|---|---|---|
AA6061-O | −741 | 2.07 × 10−6 | 1.39 × 10−1 |
AA2024-O | −659 | 4.95 × 10−6 | 6.39 × 10−2 |
HH | −729 | 8.04 × 10−7 | 3.01 × 10−2 |
LL | −713 | 3.28 × 10−6 | 7.69 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Diaz, R.; Sandoval-Amador, A.; Escorcia-Gutierrez, J.; Unfried-Silgado, J. Influence of Process Parameters on the Mechanical Properties and Corrosion Resistance of Dissimilar Friction Stir Welded Joints of AA2024-O and AA6061-O Aluminum Alloys. Metals 2024, 14, 664. https://doi.org/10.3390/met14060664
Soto-Diaz R, Sandoval-Amador A, Escorcia-Gutierrez J, Unfried-Silgado J. Influence of Process Parameters on the Mechanical Properties and Corrosion Resistance of Dissimilar Friction Stir Welded Joints of AA2024-O and AA6061-O Aluminum Alloys. Metals. 2024; 14(6):664. https://doi.org/10.3390/met14060664
Chicago/Turabian StyleSoto-Diaz, Roosvel, Anderson Sandoval-Amador, José Escorcia-Gutierrez, and Jimy Unfried-Silgado. 2024. "Influence of Process Parameters on the Mechanical Properties and Corrosion Resistance of Dissimilar Friction Stir Welded Joints of AA2024-O and AA6061-O Aluminum Alloys" Metals 14, no. 6: 664. https://doi.org/10.3390/met14060664
APA StyleSoto-Diaz, R., Sandoval-Amador, A., Escorcia-Gutierrez, J., & Unfried-Silgado, J. (2024). Influence of Process Parameters on the Mechanical Properties and Corrosion Resistance of Dissimilar Friction Stir Welded Joints of AA2024-O and AA6061-O Aluminum Alloys. Metals, 14(6), 664. https://doi.org/10.3390/met14060664