Effect of Ti Addition on the Hot-Tearing Susceptibility of the AlSi5Cu2Mg Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of the Susceptibility to Tearing
2.1.1. Quantitative Evaluation
2.1.2. Qualitative Evaluation
2.2. Thermal Analysis
2.3. Microstructural Analysis
3. Results
3.1. Thermal Analysis
3.2. Quantitative Evaluation of Susceptibility to Tearing
3.2.1. Determination of HTI1 Value
3.2.2. Determination of HTI2 Value
3.2.3. Determination of HTI3 Value
3.3. Qualitative Evaluation of the Susceptibility to Tearing
3.4. Microstructural Evaluation of Hot-Tearing Relief
4. Conclusions
- The solidification interval of the experimental alloys with Ti addition was significantly prolonged compared to the reference alloy. The extension of the solidification interval may increase the susceptibility to hot tearing.
- Quantitative evaluation of the hot-tearing susceptibility showed that the AlSi5Cu2Mg alloy has a high susceptibility to hot tearing. By evaluating the parameters HTI1, HTI2 and HTI3, it was demonstrated that the susceptibility of the AlSi5Cu2Mg alloy to hot tearing decreases due to the addition of Ti.
- Qualitatively, a positive decrease in the hot-tearing susceptibility of the AlSi5Cu2Mg alloy was observed with the addition of Ti. The addition of Ti resulted in an effective refinement of the primary α-(Al) phase and a transformation of the columnar grains into equiaxial grains, resulting in better melt-filling ability in the interdendritic spaces. The improved melt-filling ability in the interdendritic spaces resulted in higher tear resistance.
- Microstructural analysis showed that hot tears tended to propagate along the grain boundaries of the primary α-(Al) phase. The mechanism of tear initiation was characterized by ductile failure and the fracture surface was characterized by brittle fracture due to the presence of Fe-, Cu- and Ti-based intermetallic phases.
- The evaluation of the DAS index showed that there was a decrease in the value of the DAS index due to the addition of Ti. Based on the decrease in the DAS index, a refining effect of Ti on the primary phase α-(Al) was demonstrated.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sabau, A.S.; Mirmiran, S.; Glaspie, C.; Li, S.; Apelian, D.; Shyam, A.; Haynes, J.A.; Rodriguez, A.F. Hot-Tearing of Multicomponent Al-Cu Alloys Based on Casting Load Measurements in a Constrained Permanent Mold. In TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings; The Minerals, Metals & Materials Series; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 465–473. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, Q.; Li, D.; Hu, X.; Luo, M.; Kang, Y. Slurry Preparation and Hot tearing Susceptibility of A201 Aluminum Alloy in Rheological Die Casting. Solid State Phenom. 2019, 285, 311–317. [Google Scholar] [CrossRef]
- Hamadellah, A.; Bouayad, A. Study of Hot Tear of AlCu5MgTi by Restraining Casting Shrinkage in Green-Sand Mold. J. Mater. Environ. Sci. 2017, 8, 3099–3105. [Google Scholar]
- Liang, K.; Huang, H.; Tseng, C.; Chen, M.; Lee, S.; Lin, C.; Su, T. Effects of Fe, Si, Cu, and TiB2 Grain Refiner Amounts on the Hot Tearing Susceptiblity of 5083, 6061, and 7075 Aluminum Ingots. Metals 2024, 14, 15. [Google Scholar] [CrossRef]
- Su, M.; Zheng, W.; Fu, D.; Huang, H.; Zuo, X.; Yue, C.; Wang, Y.; Yuan, X. Design and Application of a Multichannel “Cross” Hot Tearing Tendency Device: A Study on Ho Tearing Tendency of Al Alloys. China Foundry 2022, 19, 327–334. [Google Scholar] [CrossRef]
- Sweet, L.; Easton, M.A.; Taylor, J.A.; Grandfield, J.F.; Davidson, C.J.; Lu, L.; Couper, M.J.; StJohn, D.H. Hot Tear Susceptibility of Al-Mg-Si-Fe Alloys with Varying Iron Contents. Met. Mater. Trans. A 2012, 44, 5396–5407. [Google Scholar] [CrossRef]
- Akhyar, H. Hot Tearing, Parameters, and Mould Typer for Observation—Review. Arch. Foundry Eng. 2022, 2, 25–49. [Google Scholar] [CrossRef]
- Malau, V.; Akhyar, H.; Iswanto, P.T. Hot Tearing Susceptibility of Aluminum Alloys Using CRCM-Horizontal Mold. Results Phys. 2017, 7, 1030–1039. [Google Scholar] [CrossRef]
- Callegari, B.; Lima, N.T.; Coelho, R.S. The Influence of Alloying Elements on the Microstructure and Properties of Al-Si-Based Casting Alloys: A Review. Metals 2023, 13, 1174. [Google Scholar] [CrossRef]
- Kang, B.K.; Sohn, I. Effects of Cu and Si Content on the Fluidity, Hot Tearing, and Mechanical Properties of Al-Cu-Si Alloys. Met. Mater. Trans. A 2018, 49, 5137–5145. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Y.; Amirhanlou, S.; Ji, S. High Performance Gravity Cast Al9Si0.45Mg0.4Cu Alloy Inoculated with AlB2 and TiB2. J. Mater. Process. Technol. 2018, 252, 604–611. [Google Scholar] [CrossRef]
- Oh, S.; Munkhdelger, C.; Kim, H. Effect of Cu Content on Hot Tearing Susceptibility in Al-Si-Cu Aluminum Casting Alloy. J. Korea Foundry Soc. 2021, 41, 419–433. [Google Scholar]
- Song, J.; Pan, F.; Jiang, B.; Atrens, A.; Zhang, M.; Lu, Y. A Review on Hot Tearing of Magnesium Alloys. J. Magnes. Alloys 2016, 4, 151–172. [Google Scholar] [CrossRef]
- Samuel, E.; Tahiri, H.; Samuel, A.M.; Songmene, V.; Samuel, F.H. A Review on Fundamentals of Grain Refining of Al-Si Cast Alloys. In Recent Advancements in Aluminum Alloys; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Sigworth, G.K.; Kuhn, T.A. Grain Refinements of Aluminum Casting Alloys. Int. J. Met. 2015, 1, 31–40. [Google Scholar] [CrossRef]
- Kumar, V.; Murty, B.S.; Chkraborty, M. Settling Behavior of TiAl3, TiB2, TiC, and AlB2 Particles in liquid Al Durin Grain Refinement. Int. J. Cast Met. Res. 2010, 23, 193–204. [Google Scholar] [CrossRef]
- Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtiera, S. A Metallographic Stdy of Grain Refining of Sr-Modified 356 Alloy. Int. J. Met. 2016, 11, 305–320. [Google Scholar] [CrossRef]
- Knaislová, A.; Michna, Š.; Hren, I.; Vlach, T.; Michalcová, A.; Novák, P.; Stančeková, D. Microstructural Characteristics of Al-Ti-B Inoculation Wires and their Addition to the AlSi7Mg0.3 Alloy. Materials 2022, 15, 7626. [Google Scholar] [CrossRef]
- Klimo, M.; Lenhard, R.; Žitek, P.; Kaduchová, K. Experimental evaluation of axial reaction turbine stage bucket loses. Processes 2021, 9, 1816. [Google Scholar] [CrossRef]
- Samuel, A.M.; Samuel, E.; Songmene, V.; Samuel, F.H. A Comparative Study of Grain Refining of Al-(7-17%)Si Cast Alloys Using Al-10%Ti and Al-4%B Master Alloys. Materials 2023, 16, 2867. [Google Scholar] [CrossRef]
- Nabawy, A.M.; Samuel, A.M.; Doty, H.W.; Samuel, F.H. A Review of the Criteria of Hot Tearing Susceptibility of Aluminum Cast Alloys. Int. J. Met. 2021, 15, 1362–1374. [Google Scholar] [CrossRef]
- Matejka, M.; Bolibruchová, D.; Kantoríková, E. Study of Susceptibility to Tearing of AlSi5Cu2Mg with Addition of Zr and Ti. Arch. Foundry Eng. 2024, 24, 107–114. [Google Scholar] [CrossRef]
- Wu, Q. Study of Hot Tearing in Cast and Wrought Aluminum Alloys. Ph.D. Thesis, Master of Science, Worcester Polytechnic Institute, Worcester, MA, USA, August 2012. [Google Scholar]
- Li, Y.; Li, H.; Katgerman, L.; Du, Q.; Zhang, J.; Zhuang, L. Recent Advances in Hot Teearing During Casting of Aluminium Alloys. Prog. Mater. Sci. 2021, 117, 100741. [Google Scholar] [CrossRef]
- EN ISO 3452-1; Non-Destructive—Penetrant Testing. ISO: Geneva, Switzerland, 2021.
- Zhang, Y.; Yan, F.; Zhao, Y.; Song, C.; Hou, H. Effect of Ti on Microstructure and Mechanical Properties of Die-Cast Al-Mg-Zn-Si Alloy. Mater. Res. Express 2022, 7, 036526. [Google Scholar] [CrossRef]
- Farahany, S.; Ourdjini, A.; Idris, M.H.; Ghandvar, H. Evaluation of the Effect of Grain Refiners on the Solidification Characteristics of and Sr-Modifief ADC12 Die Casting Alloy by Cooling Curve Thermal Analysis. J. Therm. Anal. Calorim. 2015, 119, 1593–1601. [Google Scholar] [CrossRef]
- Yoon, Y.; Ha, S.; Kim, B.; Lim, H.; Kim, S. Effect of Solidification Range on Hot Tearing Susceptibility of Al-Mg Alloys. In Proceedings of the Materials Science and Technology 2019 (MS&T19), Portland, OR, USA, 29 September–3 October 2019; pp. 1137–1141. [Google Scholar] [CrossRef]
- Elia, F.; Ravidran, C. Influence of Grain Refinement on Hot Tearing in B206 and A319 Aluminum Alloys. Trans. Indian Inst. Met. 2009, 62, 315–319. [Google Scholar] [CrossRef]
- Easton, M.A.; Wang, H.; Grandfield, J.F.; Josh, D.H.; Sweet, E. An Analysis of the Effect of Grain Refinement on the Hot Tearing of Aluminium Alloys. Mater. Forum. 2004, 28, 224–229. [Google Scholar]
- Uludag, M.; Cetin, R.; Dispinar, D. Hot Tearing tendency of A356, A314 and A380.1 Alloy. In Proceedings of the International Metallurgy and Materials Congress, Instanbul, Turkey, 29 September–1 October 2016. [Google Scholar]
- Glenn, A.M.; Russo, S.P.; Paterson, P.J.K. The Effect of Grain Refining on Macrosegregation and Dendrite Arm Spacing of Direct Chill Cast AA5182. Metal. Mater. Trans. A 2002, 34, 1513–1523. [Google Scholar] [CrossRef]
- Bubenko, M.; Fegyverneki, G.; Molnár, D.; Tokár, M. The Effect of the Excess Titanium Content on the Microstructure of Al-Si Foundry Alloys. Int. J. Eng. Manag. Sci. 2019, 4, 12–20. [Google Scholar] [CrossRef]
Si | Cu | Mg | Fe | Zr | Sr | Ti | Mo | Al |
---|---|---|---|---|---|---|---|---|
5.49 | 1.92 | 0.29 | 0.19 | 0.0009 | 0.01 | 0.013 | 0.006 | Bal. |
Si | Cu | Mg | Ti | Sr | Fe | Mo | Al | |
---|---|---|---|---|---|---|---|---|
Ti-1 | 5.81 | 1.84 | 0.27 | 0.09 | 0.007 | 0.182 | 0.0059 | Bal. |
Ti-2 | 5.72 | 1.88 | 0.23 | 0.17 | 0.005 | 0.153 | 0.0061 | Bal. |
Ti-3 | 5.62 | 1.84 | 0.22 | 0.25 | 0.006 | 0.162 | 0.0058 | Bal. |
Arm Length Coefficient | ALC | Tear Position Coefficient | TPC |
---|---|---|---|
Arm 1 (64.5 mm) | 1 | Lower part of arm | 1 |
Arm 2 (104.5 mm) | 2 | Middle part of the arm | 3 |
Arm 3 (124.5 mm) | 3 | Upper part of arm | 2 |
Arm 4 (184.5 mm) | 4 |
<0.5 | 0.5–1.25 | 1.25–2.25 | 2.25–3.5 | >3.5 | |
---|---|---|---|---|---|
HTS | Minimal | Low | Moderate | High | Very high |
Ti-Phases | α-Phase | Eutectic Al + Si | TS | |
---|---|---|---|---|
Ref. alloy | - | 610 | 567 | 517 |
Ti-1 | 638 | 625 | 554 | 483 |
Ti-2 | 640 | 623 | 551 | 481 |
Ti-3 | 645 | 622 | 553 | 486 |
No. | Hot Tear Initiation | End of Hot Tear Propagation | |||||
---|---|---|---|---|---|---|---|
Temperature (°C) | Time (s) | Load (N) | Load Force Ratio (N/s) | Temperature (°C) | Time (s) | Type of End Hot Tear Propagation | |
1. | No hot tear | max. 1260 | max. 7.9 | No hot tear | |||
2. | Immediate arm separation | Immediate arm separation | |||||
3. | 474 | 22 | max. 655 | max. 4.7 | 440 | 33 | Increase of load |
4. | Immediate arm separation | Immediate arm separation | |||||
5. | No hot tear | max. 1328 | max. 12.3 | No hot tear |
No. | Hot Tear Initiation | End Hot Tear Propagation | |||||
---|---|---|---|---|---|---|---|
Temperature (°C) | Time (s) | Load (N) | Load Force Ratio (N/s) | Temperature (°C) | Time (s) | Type of End Hot Tear Propagation | |
1. | No hot tear | max. 1075 | max. 8.1 | No hot tear | |||
2. | No hot tear | max. 1035 | max. 7.3 | No hot tear | |||
3. | 425 | 48 | max. 324 | max. 2.8 | 397 | 52 | Increase of load |
4. | 419 | 28 | max. 655 | max. 6.1 | 392 | 36 | Increase of load |
5. | No hot tear | max. 1145 | max. 9.5 | No hot tear |
No. | Hot Tear Initiation | End Hot Tear Propagation | |||||
---|---|---|---|---|---|---|---|
Temperature (°C) | Time (s) | Load (N) | Load Force Ratio (N/s) | Temperature (°C) | Time (s) | Type of End Hot Tear Propagation | |
1. | No hot tear | max. 1018 | max. 7.8 | No hot tear | |||
2. | No hot tear | max. 1168 | max. 9.7 | No hot tear | |||
3. | No hot tear 2 | max. 920 | max. 9.7 | No hot tear | |||
4. | 549 | 16 | max. 253 | max. 2.5 | 513 | 25 | Increase of load |
5. | 430 | 40 | max. 1328 | max. 12.3 | 392 | 49 | Increase of load |
No. | Hot Tear Initiation | End Hot Tear Propagation | |||||
---|---|---|---|---|---|---|---|
Temperature (°C) | Time (s) | Load (N) | Load Force Ratio (N/s) | Temperature (°C) | Time (s) | Type of End Hot Tear Propagation | |
1. | 516 | 20 | max. 683 | max. 4.7 | 487 | 26 | Increase of load |
2. | No hot tear | max. 974 | max. 9.5 | No hot tear | |||
3. | No hot tear | max. 1123 | max. 7.5 | No hot tear | |||
4. | No hot tear | max. 1151 | max. 10.6 | No hot tear | |||
5. | No hot tear | max. 1145 | max. 9.5 | No hot tear |
Ref. Alloy | Ti-1 | Ti-2 | Ti-3 |
---|---|---|---|
610–517 | 638–483 | 640–481 | 645–486 |
Ref. Alloy | Ti-1 | Ti-2 | Ti-3 |
---|---|---|---|
26.8 | 21.1 | 20.3 | 19.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matejka, M.; Bolibruchová, D.; Sýkorová, M. Effect of Ti Addition on the Hot-Tearing Susceptibility of the AlSi5Cu2Mg Alloy. Metals 2024, 14, 703. https://doi.org/10.3390/met14060703
Matejka M, Bolibruchová D, Sýkorová M. Effect of Ti Addition on the Hot-Tearing Susceptibility of the AlSi5Cu2Mg Alloy. Metals. 2024; 14(6):703. https://doi.org/10.3390/met14060703
Chicago/Turabian StyleMatejka, Marek, Dana Bolibruchová, and Martina Sýkorová. 2024. "Effect of Ti Addition on the Hot-Tearing Susceptibility of the AlSi5Cu2Mg Alloy" Metals 14, no. 6: 703. https://doi.org/10.3390/met14060703
APA StyleMatejka, M., Bolibruchová, D., & Sýkorová, M. (2024). Effect of Ti Addition on the Hot-Tearing Susceptibility of the AlSi5Cu2Mg Alloy. Metals, 14(6), 703. https://doi.org/10.3390/met14060703