Effect of Incorporation of Sulfation in Columnar Modeling of Oxidized Copper Minerals on Predictions of Leaching Kinetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ore Sample
2.2. Reagents
2.2.1. Pretreatment Test
2.2.2. Leaching Column Test
2.2.3. Modeling Leaching Column
2.2.4. Sulfation Factor in Modeling Leaching Column
2.2.5. Validation Modeling Leaching Column
3. Results and Discussion
3.1. Pretreatment Test
3.2. Column Leaching
3.3. Validation Modeling Leaching Column
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, Z.; Yan, J.; An, H.; Tan, J.; Han, Y.; Li, H.; Yang, J.; Ramakrishna, S. Resource, Environmental and Economics Research for Primary and Secondary Copper: A Bibliometric and Systematic Review. J. Clean. Prod. 2023, 425, 138671. [Google Scholar] [CrossRef]
- Radetzki, M. Seven Thousand Years in the Service of Humanity-the History of Copper, the Red Metal. Resour. Policy 2009, 34, 176–184. [Google Scholar] [CrossRef]
- Craddock, P.T. Mining and Metallurgy. In The Oxford Handbook of Engineering and Technology in the Classical World; Oleson, J.P., Ed.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Chilean Copper Commission (Cochilco). Yearbook Copper Statistics and Other Minerals 2003–2022; Gobierno de Chile: Santiago, Chile, 2023. [Google Scholar]
- Trujillo, J.Y.; Cisternas, L.A.; Gálvez, E.D.; Mellado, M.E. Optimal Design and Planning of Heap Leaching Process. Application to Copper Oxide Leaching. Chem. Eng. Res. Des. 2014, 92, 308–317. [Google Scholar] [CrossRef]
- Hernández, I.F.; Ordóñez, J.I.; Robles, P.A.; Gálvez, E.D.; Cisternas, L.A. A Methodology For Design And Operation Of Heap Leaching Systems. Miner. Process. Extr. Metall. Rev. 2017, 38, 180–192. [Google Scholar] [CrossRef]
- Padilla, G.A.; Cisternas, L.A.; Cueto, J.Y. On the Optimization of Heap Leaching. Miner. Eng. 2008, 21, 673–678. [Google Scholar] [CrossRef]
- Miao, X.; Narsilio, G.A.; Wu, A.; Yang, B. A 3D Dual Pore-System Leaching Model. Part 1: Study on Fluid Flow. Hydrometallurgy 2017, 167, 173–182. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, W. Application of Aerial Image Analysis for Assessing Particle Size Segregation in Dump Leaching. Hydrometallurgy 2017, 171, 99–105. [Google Scholar] [CrossRef]
- Quezada, V.; Roca, A.; Benavente, O.; Cruells, M.; Melo, E. The Effects of Sulphuric Acid and Sodium Chloride Agglomeration and Curing on Chalcopyrite Leaching. Metals 2021, 11, 873. [Google Scholar] [CrossRef]
- Ilankoon, I.M.S.K.; Neethling, S.J.; Huang, Z.; Cheng, Z. Improved Inter-Particle Flow Models for Predicting Heap Leaching Hydrodynamics. Miner. Eng. 2017, 111, 108–115. [Google Scholar] [CrossRef]
- Robertson, S. Development of an Integrated Heap Leach Solution Flow and Mineral Leaching Model. Hydrometallurgy 2017, 169, 79–88. [Google Scholar] [CrossRef]
- Lu, J.; Dreisinger, D.; West-Sells, P. Acid Curing and Agglomeration for Heap Leaching. Hydrometallurgy 2017, 167, 30–35. [Google Scholar] [CrossRef]
- Hoummady, E.; Golfier, F.; Cathelineau, M.; Truche, L.; Durupt, N.; Blanvillain, J.-J.; Neto, J.; Lefevre, E. An Integrated Multiscale Approach to Heap Leaching of Uranium-Ore Agglomerates. Hydrometallurgy 2018, 178, 274–282. [Google Scholar] [CrossRef]
- Velásquez-Yévenes, L.; Torres, D.; Toro, N. Leaching of Chalcopyrite Ore Agglomerated with High Chloride Concentration and High Curing Periods. Hydrometallurgy 2018, 181, 215–220. [Google Scholar] [CrossRef]
- Hernández, P.C.; Dupont, J.; Herreros, O.O.; Jimenez, Y.P.; Torres, C.M. Accelerating Copper Leaching from Sulfide Ores in Acid-Nitrate-Chloride Media Using Agglomeration and Curing as Pretreatment. Minerals 2019, 9, 250. [Google Scholar] [CrossRef]
- Cerda, C.; Taboada, M.; Jamett, N.; Ghorbani, Y.; Hernández, P. Effect of Pretreatment on Leaching Primary Copper Sulfide in Acid-Chloride Media. Minerals 2017, 8, 1. [Google Scholar] [CrossRef]
- van Staden, P.J.; Kolesnikov, A.V.; Petersen, J. Comparative Assessment of Heap Leach Production Data—1. A Procedure for Deriving the Batch Leach Curve. Miner. Eng. 2017, 101, 47–57. [Google Scholar] [CrossRef]
- van Staden, P.J.; Huynh, T.D.; Kiel, M.K.; Clark, R.I.; Petersen, J. Comparative Assessment of Heap Leach Production Data—2. Heap Leaching Kinetics of Kipoi HMS Floats Material, Laboratory vs. Commercial Scale. Miner. Eng. 2017, 101, 58–70. [Google Scholar] [CrossRef]
- Gómez Marroquín, M.C. Aplicación de Modelos Cinéticos de Lixiviación de Minerales de Cobre en la Optimización del Pretratamiento Curado—Aglomerado de la Planta de Óxidos de Cobre de la Compañía Minera Condestable S.A. Bachelor’s Thesis, Universidad Nacional de Ingeniería, Lima, Perú, 2001. [Google Scholar]
- Levenspiel, O. Ingeniería de Las Reacciones Químicas; Reverté: Barcelona, Spain, 2013; pp. 1–38. [Google Scholar]
- Benner, B.R.; Roman, R.J. Determination of the Effective Diffusivity of H+ Ions in a Copper Ore. Trans. Soc. Min. AIME 1974, 256, 103–105. [Google Scholar]
- Rubcumintara, T.; Han, K.N. Metal Ionic Diffusivity: Measurement and Application. Miner. Process. Extr. Metall. Rev. 1990, 7, 23–47. [Google Scholar] [CrossRef]
- Liddell, K.C. Shrinking Core Models in Hydrometallurgy: What Students Are Not Being Told about the Pseudo-Steady Approximation. Hydrometallurgy 2005, 79, 62–68. [Google Scholar] [CrossRef]
- Dicinoski, G.W.; Gahan, L.R.; Lawson, P.J.; Rideout, J.A. Application of the Shrinking Core Model to the Kinetics of Extraction of Gold(I), Silver(I) and Nickel(II) Cyanide Complexes by Novel Anion Exchange Resins. Hydrometallurgy 2000, 56, 323–336. [Google Scholar] [CrossRef]
- Bădulescu, C. The Study of the Biotechnology of Sulfur Minerals. Min. Rev. 2023, 29, 50–59. [Google Scholar] [CrossRef]
- Habbache, N.; Alane, N.; Djerad, S.; Tifouti, L. Leaching of Copper Oxide with Different Acid Solutions. Chem. Eng. J. 2009, 152, 503–508. [Google Scholar] [CrossRef]
Sample | Cutot (%) | Cusol (%) | Acid Consumption (kg/ton) |
---|---|---|---|
Mineral −3/4″ | 0.76 | 0.66 | 114 |
Mineral −3/8″ | 0.77 | 0.67 | 112 |
Variable | Level |
---|---|
Acid dosage | 20, 30, 40% (1) |
Humidity | 110, 100, 90% (2) |
P80 | −3/4″, −3/8″ |
Resting time | 24, 48, 72, 96 h |
Column | P80 (µm) | Acid Dosage (kg/t) | Humidity (%) | Rest Time (h) |
---|---|---|---|---|
1 | 7862 | 34.2 | 5.91 | 24 |
2 | 6902 | 34.2 | 6.21 | 24 |
3 | 7862 | 34.2 | 5.91 | 48 |
4 | 6902 | 34.2 | 6.21 | 48 |
5 | 7862 | 45.6 | 5.91 | 24 |
6 | 6902 | 45.6 | 6.21 | 24 |
7 | 7862 | 45.6 | 5.91 | 48 |
8 | 6902 | 45.6 | 6.21 | 48 |
Column | P80 (µm) | Acid Dosage (kg/t) | Rest Time (h) | Rate Constant, k (1/s) |
---|---|---|---|---|
1 | 7862 | 34.2 | 24 | 0.004790 |
2 | 6902 | 34.2 | 24 | 0.005224 |
3 | 786 | 34.2 | 48 | 0.004757 |
4 | 6902 | 34.2 | 48 | 0.005057 |
5 | 7862 | 45.6 | 24 | 0.004529 |
6 | 6902 | 45.6 | 24 | 0.004823 |
7 | 7862 | 45.6 | 48 | 0.004763 |
8 | 6902 | 45.6 | 48 | 0.004577 |
Column | P80 (µm) | Acid Dosage (kg/t) | Rest Time (h) | Sulfation Factor, FS |
---|---|---|---|---|
1 | 7862 | 34.2 | 24 | 0.443 |
2 | 6902 | 34.2 | 24 | 0.481 |
3 | 7862 | 34.2 | 48 | 0.459 |
4 | 6902 | 34.2 | 48 | 0.479 |
5 | 7862 | 45.6 | 24 | 0.423 |
6 | 6902 | 45.6 | 24 | 0.458 |
7 | 7862 | 45.6 | 48 | 0.401 |
8 | 6902 | 45.6 | 48 | 0.462 |
Mineral | P80 (µm) | Acid Dosage (kg/t) | Water (kg/t) | Rest Time (h) | Rate Constant, k (1/s) | Sulfation Factor, FS |
---|---|---|---|---|---|---|
A | 15,153 | 35 | 33.6 | 24 | 0.003149 | 0.316 |
10,576 | 35 | 54.2 | 24 | 0.002302 | 0.419 | |
2135 | 35 | 92.2 | 24 | 0.002486 | 0.366 | |
B | 9410 | 20 | 74.2 | 24 | 0.001935 | 0.309 |
10,750 | 60 | 74.2 | 24 | 0.001590 | 0.294 | |
10,950 | 30 | 74.2 | 24 | 0.001779 | 0.367 | |
9480 | 22 | 74.2 | 24 | 0.001824 | 0.329 | |
8760 | 22 | 74.2 | 24 | 0.002123 | 0.329 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruce, E.; Sepúlveda, R.; Castillo, J.; Saldana, M. Effect of Incorporation of Sulfation in Columnar Modeling of Oxidized Copper Minerals on Predictions of Leaching Kinetics. Metals 2024, 14, 708. https://doi.org/10.3390/met14060708
Bruce E, Sepúlveda R, Castillo J, Saldana M. Effect of Incorporation of Sulfation in Columnar Modeling of Oxidized Copper Minerals on Predictions of Leaching Kinetics. Metals. 2024; 14(6):708. https://doi.org/10.3390/met14060708
Chicago/Turabian StyleBruce, Elena, Rossana Sepúlveda, Jonathan Castillo, and Manuel Saldana. 2024. "Effect of Incorporation of Sulfation in Columnar Modeling of Oxidized Copper Minerals on Predictions of Leaching Kinetics" Metals 14, no. 6: 708. https://doi.org/10.3390/met14060708
APA StyleBruce, E., Sepúlveda, R., Castillo, J., & Saldana, M. (2024). Effect of Incorporation of Sulfation in Columnar Modeling of Oxidized Copper Minerals on Predictions of Leaching Kinetics. Metals, 14(6), 708. https://doi.org/10.3390/met14060708