Study on the Recognition of Metallurgical Graphs Based on Deep Learning
Abstract
:1. Introduction
2. Modified MobileNetV2 Model
2.1. Network Structure
2.2. Network Operation
2.3. Parameter Settings
3. Training Set Preparation, Training, and Validation
3.1. Data Classification and Preprocessing
3.2. Data Augmentation
3.3. Fine Classification
3.4. Training, Validation and Prediction
4. Results
4.1. Training, Validation, and Prediction Results for Established Dataset
4.2. Results of Particular Classes
4.3. Application
5. Discussion
5.1. Effect of MobileNetV2 and Pre-Training
5.2. Visual Interpretation of the Model
5.3. Satisfaction of the Actual Requirement
6. Conclusions
- (1)
- The network exhibits high accuracy during both training and prediction and relatively successfully predicts detailed information including composition, microscope, magnification, and etchant. The accuracies of training, validation, and prediction for fine classification with data augmentation respectively reach 95.11%, 94.44%, and 93.87%. In each category of the fine classification, the prediction accuracy is higher than 80%.
- (2)
- The training effect can be influenced by the classification level and the data augmentation method. The method of data augmentation can significantly increase training accuracy. Under the conditions of the pre-trained MobileNetV2 network and a dataset with a relatively small quantity and category used in this study, the accuracy of prediction is acceptable.
- (3)
- ImageNet, as a pre-trained dataset, greatly improves the training and prediction performance of MobileNetV2 networks. Under the same condition, MobileNetV2 has better prediction accuracy than Xception and VGG19 networks.
- (4)
- This study shows that neural networks can be used to recognize metallographic images not only by their material type but also by more details, such as composition, microscope, magnification, the use of etchants, etc.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smallman, R.E.; Ashbee, K.H. Modern Metallography: The Commonwealth and International Library: Metallurgy Division; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Bharadiya, J.P. A Comprehensive survey of deep learning techniques natural language processing. Eur. J. Technol. 2023, 7, 58–66. [Google Scholar] [CrossRef]
- Thiéry, A.H.; Braeu, F.; Tun, T.A.; Aung, T.; Girard, M.J.A. Medical application of geometric deep learning for the diagnosis of glaucoma. Transl. Vis. Sci. Technol. 2023, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Conze, P.-H.; Andrade-Miranda, G.; Singh, V.K.; Jaouen, V.; Visvikis, D. Current and emerging trends in medical image segmentation with deep learning. IEEE Trans. Radiat. Plasma Med. Sci. 2023, 7, 545–569. [Google Scholar] [CrossRef]
- Liu, F.; Chen, D.; Wang, F.; Li, Z.; Xu, F. Deep learning based single sample face recognition: A survey. Artif. Intell. Rev. 2022, 56, 2723–2748. [Google Scholar] [CrossRef]
- Zhen, X.; Chen, J.; Zhong, Z.; Hrycushko, B.; Zhou, L.; Jiang, S.; Albuquerque, K.; Gu, X. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: A feasibility study. Phys. Med. Biol. 2017, 62, 8246. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 2, 2672–2680. [Google Scholar]
- Zhong, P.; Gong, Z.; Li, S.; Schonlieb, C.-B. Learning to diversify deep belief networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, Y.; Wang, X.; Yuan, J.; Ding, Q. Multiple feature reweight densenet for image classification. IEEE Access 2019, 7, 9872–9880. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Y.; Li, Z. Texture Image Recognition Based on Deep Convolutional Neural Network and Transfer Learning. J. Comput.-Aided Des. Comput. Graph./Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao 2022, 34, 701–710. [Google Scholar] [CrossRef]
- Chowdhury, A.; Kautz, E.; Yener, B.; Lewis, D. Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 2016, 123, 176–187. [Google Scholar] [CrossRef]
- Zhao, Q.; Kang, J.; Wu, K.; Cheng, S.; Jiao, M.; Tang, Y.; Wang, C.; Li, X.; Li, C. Research on Self-organized CNN Modeling to Identify Metallographic Structure of Heat-resistant Steel. Mater. Rep. 2022, 36, 21030032-1–21030032-6. [Google Scholar]
- Kesireddy, A.; McCaslin, S. Application of image processing techniques to the identification of phases in steel metallographic specimens. In New Trends in Networking, Computing, E-Learning, Systems Sciences, and Engineering; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar]
- Vernon-Parry, K. Scanning electron microscopy: An introduction. III-Vs Rev. 2000, 13, 40–44. [Google Scholar] [CrossRef]
- Sun, H.; Dong, J.; Liu, F.; Ding, F. Etching of two-dimensional materials. Mater. Today 2021, 42, 192–213. [Google Scholar] [CrossRef]
- Sellaro, T.L.; Filkins, R.; Hoffman, C.; Fine, J.L.; Ho, J.; Parwani, A.V.; Pantanowitz, L.; Montalto, M.; Jl, F.J.H. Relationship between magnification and resolution in digital pathology systems. J. Pathol. Inform. 2013, 4, 21. [Google Scholar] [CrossRef]
- Liao, Y.-G.; Han, X.-Q.; Zeng, M.-X.; Jin, M. Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy. Mater. Des. 2015, 66, 581–586. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Stanford Vision Lab; Stanford University; Princeton University. ImageNet. Available online: https://www.image-net.org/ (accessed on 22 November 2023).
- Li, Z.; Zhu, Y.; Yang, F.; Li, W.; Zhao, C.; Chen, Y.; Chen, Z.; Xie, J.; Wu, L.; Zhao, R.; et al. Univip: A unified framework for self-supervised visual pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Friedrich, S.; Groll, A.; Ickstadt, K.; Kneib, T.; Pauly, M.; Rahnenführer, J.; Friede, T. Regularization approaches in clinical biostatistics: A review of methods and their applications. Stat. Methods Med. Res. 2023, 32, 425–440. [Google Scholar] [CrossRef]
- Nitish, S. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Jaiswal, S.; Mehta, A.; Nandi, G. Investigation on the effect of L1 an L2 regularization on image features extracted using restricted boltzmann machine. In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning PMLR 2015, Lille, France, 7–9 July 2015. [Google Scholar]
- ASM INTERNATIONAL. ASM Materials Information ASM Micrograph Database. Available online: https://matdata.asminternational.org/mgd/index.aspx (accessed on 22 November 2023).
- Wang, J.; Shi, W.; Zeng, X. Optimal wavelet estimators of the heteroscedastic pointspread effects and Gauss white noises model. Commun. Stat.—Theory Methods 2022, 51, 1133–1154. [Google Scholar] [CrossRef]
- Radzikowska, J.M. Metallography and microstructures of cast iron. In ASM Handbook, Volume 9: Metallography and Microstructures; ASM International, Ed.; Vander Voort, G.F.: Materials Park, OH, USA, 2004; pp. 565–587. [Google Scholar] [CrossRef]
- Geng, Y. Microstructure Evolution during Extrusion of AA3xxx Aluminum Alloys. Doctoral Dissertation, University of British Columbia, New York, NY, USA, 2011. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Shahi, T.B.; Sitaula, C.; Neupane, A.; Guo, W. Fruit classification using attention-based MobileNetV2 for industrial applications. PLoS ONE 2022, 17, e0264586. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Shen, X.; Tsang, I.W. The emerging trends of multi-label learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7955–7974. [Google Scholar] [CrossRef] [PubMed]
Items | Contents |
---|---|
CPU | Intel®Core™i7-10700 CPU |
Operation system | Windows 11 |
Libraries | TensorFlow 2.4 |
Python version | Python 3.7 |
Parameters | Epoch | Batch Size | Validation Frequency | Learning Rate of L2 Regularization | Probability of Dropout Regularization |
---|---|---|---|---|---|
Value | 25 | 64 | 1 | 0.001 | 0.5 |
Training Dataset 1 Rough Classification | Training Dataset 2 Rough Classification with Data Augmentation | Training Dataset 3 Fine Classification | |||
---|---|---|---|---|---|
Class | Number of Images | Class | Number of Images | Class | Number of Images |
Ductile cast iron | 71 | Ductile cast iron | 360 | Etched, nital, 100×, OM | 228 |
Unetched, 100×, OM | 83 | ||||
500×, SEM | 65 | ||||
Gray cast iron | 192 | Gray cast iron | 968 | Etched, nital, 500×, OM | 126 |
Etched, nital, 100×, OM | 177 | ||||
Etched, picral, 500×, OM | 204 | ||||
White cast iron | 129 | White cast iron | 642 | Etched, picral, 100×, OM | 262 |
Unetched, 100×, OM | 194 | ||||
HCC, 500×, OM | 266 | ||||
HCC, 100×, OM | 79 | ||||
LCC, 500×, OM | 80 | ||||
LCC, 100×, OM | 202 | ||||
Cast aluminum | 58 | Cast aluminum | 280 | 2xx, 100×, OM | 74 |
3xx, 100×, OM | 82 | ||||
4xx, 100×, OM | 128 |
The Number of Images in Datasets | Training Dataset 1 Rough Classification | Training Dataset 2 Rough Classification with Data Augmentation | Training Dataset 3 Fine Classification |
---|---|---|---|
Training set | 360 | 1800 | 1800 |
Validation set | 90 | 450 | 450 |
Test set | 75 | 375 | 375 |
Training | Validation | Prediction | |||
---|---|---|---|---|---|
Accuracy | Loss | Accuracy | Loss | Accuracy | |
Scheme 1 (rough classification) | 92.50% | 0.2319 | 91.11% | 0.2670 | 86.67% |
Scheme 2 (rough classification with data augmentation) | 94.67% | 0.1754 | 94.44% | 0.1453 | 94.44% |
Scheme 3 (fine classification) | 95.11% | 0.2094 | 94.44% | 0.2504 | 93.87% |
Class of Rough Classification | Class of Fine Classification | Number of Images | Prediction Accuracy |
---|---|---|---|
Ductile cast iron | Etched, nital, 100×, OM, | 37 | 86.49% |
Unetched, 100×, OM | 10 | 80% | |
500×, SEM | 12 | 91.67% | |
Gray cast iron | Etched, nital, 500×, OM | 24 | 95.83% |
Etched, nital, 100×, OM | 38 | 89.47% | |
Etched, picral, 500×, OM | 36 | 94.44% | |
Etched, picral, 100×, OM | 38 | 94.74% | |
Unetched, 100×, OM | 31 | 93.55% | |
White cast iron | HCC, 500×, OM | 11 | 90.91% |
HCC, 100×, OM | 10 | 100% | |
LCC, 500×, OM | 44 | 100% | |
LCC, 100×, OM | 38 | 97.37% | |
Cast aluminum | 2xx, 100×, OM | 6 | 83.33% |
3xx, 100×, OM | 18 | 100% | |
4xx, 100×, OM | 22 | 100% |
Class | Material | Microscope Type | Etchant | Magnification | Component |
---|---|---|---|---|---|
Unetched, 100×, OM ductile cast iron | 100% | 100% | 100% | 100% | 100% |
Etched, nital, 100×, OM ductile cast iron | 100% | 100% | 100% | 100% | 100% |
Unetched, 100×, OM gray cast iron | 100% | 100% | 66.67% | 66.67% | 100% |
3xx, 100×, OM cast aluminum | 100% | 100% | - | 100% | 0% |
Training Accuracy | Training Loss | Validation Accuracy | Validation Loss | |
---|---|---|---|---|
MobileNetV2 as a pre-trained model | 95.11% | 0.2094 | 94.44% | 0.2504 |
MobileNetV2 as part of the model | 97.78% | 0.0913 | 14.44% | 12.3712 |
Training Accuracy | Training Loss | Validation Accuracy | Validation Loss | Prediction Accuracy | Number of Parameters | Training Time (s) | |
---|---|---|---|---|---|---|---|
MobileNetV2 | 94.76% | 0.2373 | 94.44% | 0.2590 | 93.87% | 2,263,108 | 284.69 |
Xception | 90.83% | 0.5863 | 82.00% | 0.7864 | 81.33% | 20,892,215 | 905.07 |
VGG19 | 66.72% | 1.2328 | 73.11% | 1.1666 | 70.93% | 20,032,079 | 1761.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Kang, J.; Wu, K. Study on the Recognition of Metallurgical Graphs Based on Deep Learning. Metals 2024, 14, 732. https://doi.org/10.3390/met14060732
Zhao Q, Kang J, Wu K. Study on the Recognition of Metallurgical Graphs Based on Deep Learning. Metals. 2024; 14(6):732. https://doi.org/10.3390/met14060732
Chicago/Turabian StyleZhao, Qichao, Jinwu Kang, and Kai Wu. 2024. "Study on the Recognition of Metallurgical Graphs Based on Deep Learning" Metals 14, no. 6: 732. https://doi.org/10.3390/met14060732
APA StyleZhao, Q., Kang, J., & Wu, K. (2024). Study on the Recognition of Metallurgical Graphs Based on Deep Learning. Metals, 14(6), 732. https://doi.org/10.3390/met14060732