Layer Approach to Model Fatigue Strength of Surface-Hardened Components
Abstract
:1. Introduction
- Experimental investigation of the cyclic fatigue strength properties of 38MnSiVS5 steel in two different microstructural states (untreated and martensitic microstructure) are discussed in detail in Section 2.
- Development of a depth-dependent fatigue stress diagram for surface-hardened components by the example of a crankshaft section.
- Validation study of a two-layer approach, in order to calculate the fatigue strength of an induction-hardened crankshaft section under alternate bending.
2. Material and Methods
- Unnotched, untreated Rz1 specimen.
- Unnotched, hardened Rz1 specimen.
- Notched, untreated Rz1 specimen.
- Notched, hardened Rz1 specimen.
- However, to achieve a depth-dependent Haigh diagram, this paper derived from uniaxial unnotched tension–compression S/N curves.
3. Test Results
4. Model and Discussion
- Variant 1 base material properties of 38MnSiVS5 (see Figure 8 untreated).
5. Conclusions
- Uniaxial fatigue tests of unnotched round specimens under tension–compression loading at an alternating stress ratio of show that the high-cycle fatigue strength of the hardened surface layer was higher by approx. a factor of 2 than the unhardened basic structure.
- Further fatigue investigations under tension–compression loading at a pulsating stress ratio of showed that the mean stress sensitivity of the hardened surface layer was higher by approx. a factor of than the unhardened basic structure.
- The reduction to a two-layer approach for the computational fatigue strength evaluation of a crankshaft section under alternate bending led to an -more-realistic assessment, in accordance with the experimental test results.
- For further investigations, more analysis by including multiaxial [38] or local residual stress states [32] should be initiated. In general, different process parameters can lead to a significant variation in local residual stress states [39], whereas the presented approach acts as a feasible application-oriented method to assess the fatigue strength of induction hardened components, considering such effects. Other additional surface treatment methods like case hardening [40], shot peening [41], deep rolling [42] and superimposed treatment techniques [21] offer further potential for the presented approach, whereby additional effects, such as the surface treatment layer thickness [43], can be further investigated.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | elongation |
diameter | |
E | Youngs modulus |
L | specimen length |
m | mean stress sensitivity |
bending moment (time-dependent) | |
survival probability | |
R | stress ratio |
radius unnotched specimen | |
radius notched specimen | |
tensile strength | |
yield strength | |
S | safety |
dispersion | |
angle of notch | |
relative stress gradient | |
stress | |
normal stress | |
stress amplitude | |
mean stress | |
residual stress | |
alternating fatigue strength, tension–compression |
References
- Muttana, S.B.; Mubashir, S. Design strategy for light weight vehicles. S. Auto Tech. Rev. 2012, 1, 20–27. [Google Scholar] [CrossRef]
- Savaria, V.; Bridier, F.; Bocher, P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears. Int. J. Fatigue 2016, 85, 70–84. [Google Scholar] [CrossRef]
- Fajkoš, R.; Zima, R.; Strnadel, B. Fatigue limit of induction hardened railway axles. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 1255–1264. [Google Scholar] [CrossRef]
- Xie, L.; Palmer, D.; Otto, F.; Wang, Z.; Wang, J. Effect of surface hardening technique and case depth on rolling contact fatigue behavior of alloy steels. Tribol. Trans. 2015, 58, 215–224. [Google Scholar] [CrossRef]
- Pavlov, V.F.; Kirpichev, V.A.; Vakulyuk, V.S.; Sazanov, V.P.; Bukatyi, A.S. Assessment of the influence of surface hardening on fatigue limit by residual stresses. Strength Mater. 2014, 45, 649–653. [Google Scholar] [CrossRef]
- Vieweg, A.; Ressel, G.; Prevedel, P.; Raninger, P.; Panzenböck, M.; Marsoner, S.; Ebner, R. Induction hardening: Differences to a conventional heat treatment process and optimization of its parameters. IOP Conf. Ser. Mater. Sci. Eng. 2015, 119, 012019. [Google Scholar] [CrossRef]
- Bertini, L.; Fontanari, V. Fatigue behaviour of induction hardened notched components. Int. J. Fatigue 1999, 21, 611–617. [Google Scholar] [CrossRef]
- Conradt, G. Randschichthärten von Kurbelwellen. Mot. Z. 2003, 64, 746–751. [Google Scholar] [CrossRef]
- Conradt, G. Werkstoffgerechte Randschichtkonzepte für die Festigkeitsgestaltung von Kurbelwellen. Härt.-Tech. Mitt. 2004, 59, 358–362. [Google Scholar] [CrossRef]
- Conradt, G. Betrachtungen zur Schwingfestigkeit von Bauteilen nach induktiver Randschichthärtung mit sehr kurzen Heizzeiten. Härt.-Tech. Mitt. 2006, 61, 165–171. [Google Scholar] [CrossRef]
- Eser, A.; Bezold, A.; Broeckmann, C.; Schruff, I.; Greeb, T. Simulation des Anlassens eines dickwandigen Bauteils aus dem Stahl X40CrMoV5-1. J. Heat Treat. Mater. 2014, 69, 127–137. [Google Scholar] [CrossRef]
- Eser, A.; Broeckmann, C.; Simsir, C.A.N.E.R. Multiscale modeling of tempering of AISI H13 hot-work tool steel—Part 1: Prediction of microstructure evolution and coupling with mechanical properties. Comput. Mater. Sci. 2016, 113, 280–291. [Google Scholar] [CrossRef]
- Eser, A.; Broeckmann, C.; Simsir, C.A.N.E.R. Multiscale modeling of tempering of AISI H13 hot-work tool steel—Part 2: Coupling predicted mechanical properties with FEM simulations. Comput. Mater. Sci. 2016, 113, 292–300. [Google Scholar] [CrossRef]
- Gür, C.H.; Şimşir, C. Simulation of Quenching: A Review. Mater. Perform. Charact. 2012, 1, 1–37. [Google Scholar] [CrossRef]
- Barglik, J.; Smalcerz, A.; Przylucki, R.; Doležel, I. 3D modelling of induction hardening of gear wheels. J. Comput. Appl. Math. 2013, 270, 231–240. [Google Scholar] [CrossRef]
- Grum, J. Analysis of residual stresses in main crankshaft bearings after induction surface hardening and finish grinding. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2003, 217, 173–182. [Google Scholar] [CrossRef]
- Grum, J. A review of the influence of grinding conditions on resulting residual stresses after induction surface hardening and grinding. J. Mater. Process. Technol. 2001, 114, 212–226. [Google Scholar] [CrossRef]
- Schwenk, M. Numerische Modellierung der Induktiven Ein—und Zweifrequenzrandschichthärtung. Ph.D. Dissertation, Karlsruher Institut für Technologie, Karlsruhe, Germany, 2012. [Google Scholar]
- Schütz, W. Über eine Beziehung Zwischen der Lebensdauer bei Konstanter und bei Veränderlicher Beanspruchungsamplitude und ihre Anwendbarkeit auf die Bemessung von Flugzeugbauteilen. Ph.D. Dissertation, TH München, Munich, Germany, 1965. [Google Scholar]
- Renner, R.; Kullig, E.; Vormwald, M.; Esderts, A.; Siegele, D. FKM-Richtlinie: Rechnerischer Festigkeitsnachweis für Maschinenbauteile aus Stahl, Eisenguß- und Aluminiumwerkstoffen; VDMA: Frankfurt, Germany, 2012. [Google Scholar]
- Leitner, M.; Grün, F.; Tuncali, Z.; Chen, W. Fatigue and Fracture Behavior of Induction-Hardened and Superimposed Mechanically Post-treated Steel Surface Layers. J. Mater. Eng. Perform. 2018, 27, 4881–4892. [Google Scholar] [CrossRef]
- Leitner, M.; Aigner, R.; Dobberke, D. Local fatigue strength assessment of induction hardened components based on numerical manufacturing process simulation. Procedia Eng. 2018, 213, 644–650. [Google Scholar] [CrossRef]
- Duan, C.; Qu, S.; Hu, X.; Jia, S.; Li, X. Microstructures and fatigue behaviors of 25CrNi2MoV steel under electropulsing-assisted ultrasonic surface rolling. Int. J. Fatigue 2022, 158, 106733. [Google Scholar] [CrossRef]
- Ao, N.; Liu, D.; Zhang, X.; Liu, C. Enhanced fatigue performance of modified plasma electrolytic oxidation coated Ti-6Al-4V alloy: Effect of residual stress and gradient nanostructure. Appl. Surf. Sci. 2019, 489, 595–607. [Google Scholar] [CrossRef]
- Fernandez, R.C.; Tobie, T.; Collazo, J. Increase wind gearbox power density by means of IGS (Improved Gear Surface). Int. J. Fatigue 2022, 159, 106789. [Google Scholar] [CrossRef]
- Dobberke, D.; Wiebesiek, J.; Fröschl, J.; Leitner, M. Fatigue test results of surface hardened components to evaluate a two layer approach for strength assessment. Procedia Eng. 2018, 213, 262–269. [Google Scholar] [CrossRef]
- Bruder, T.; Seeger, T. Schwingfestigkeitsbeurteilung randschichtverfestigter Proben auf der Grundlage örtlicher elastisch-plastischer Beanspruchungen. Mater. Sci. Eng. Technol. 1995, 26, 89–100. [Google Scholar] [CrossRef]
- Lechmann, M. Entwicklung eines Schwingbruchmechanischen Auslegungskonzeptes für innendruckbeanspruchte Bauteile mit Ausgeprägten Druckeigenspannungsfeldern. Ph.D. Dissertation, Universität Stuttgart, Stuttgart, Germany, 2007. [Google Scholar]
- Wegener, K.W. Werkstoffentwicklung für Schmiedeteile im Automobilbau. ATZ Autmobiltech. Ztg. 1998, 100, 918–927. [Google Scholar] [CrossRef]
- DIN EN 10267; Von Warmformgebungstemperatur Ausscheidungshärtende Ferritisch-Perlitische Stähle. DIN Deutsches Institut für Normung: Berlin, Germany, 1998.
- Hueck, M. Ein verbessertes Verfahren für die Auswertung von Treppenstufenversuchen. Mater. Sci. Eng. Technol. 1983, 14, 406–417. [Google Scholar]
- Dobberke, D. Neue Verfahren zur Betriebsfestigkeitsbewertung von Randschichtgehärteten Bauteilen. Ph.D. Dissertation, MU Leoben, Leoben, Austria, 2021. [Google Scholar]
- Pavlina, E.J.; Van Tyne, C.J. Correlation of Yield Strength and Tensile Strength with Hardness for Steels. J. Mater. Perform. 2008, 17, 888–893. [Google Scholar] [CrossRef]
- McKelvey, S.A.; Lee, Y.L.; Barkey, M.E. Stress-Based Uniaxial Fatigue Analysis Using Methods Described in FKM-Guideline. J. Fail. Anal. Prev. 2012, 12, 445–484. [Google Scholar] [CrossRef]
- Eichlseder, W. Fatigue analysis by local stress concept based on finite element results. J. Comput. Struct. 2002, 80, 2109–2113. [Google Scholar] [CrossRef]
- Engineering Center Steyr GmbH & Co. KG St. Valentin. FEMFAT Basic Theorie Manual. 2011. Volume 5. Available online: https://engineering.mpt.magna.com/ (accessed on 26 May 2024).
- Unger, B.; Steinwender, G.; Gaier, C. FEM gestützte Festigkeitsberechnungen im Fahrzeug- und Motorenbau—Erfahrungen, Analyse und Ausblick. VDI Ber. Festigk. Met. Baut. 1998, 1442, 255–268. [Google Scholar]
- Palin-Luc, T.; Coupard, D.; Dumas, C.; Bristiel, P. Simulation of multiaxial fatigue strength of steel component treated by surface induction hardening and comparison with experimental results. Int. J. Fatigue 2011, 33, 1040–1047. [Google Scholar] [CrossRef]
- Kristoffersen, H.; Vomacka, P. Influence of process parameters for induction hardening on residual stresses. Mater. Des. 2001, 22, 637–644. [Google Scholar] [CrossRef]
- Iss, V.; Meis, J.-A.; Rajaei, A.; Hallstedt, B.; Broeckmann, C. Fatigue strength evaluation of case-hardened components combining heat-treatment simulation and probabilistic approaches. Fatigue Fract. Eng. Mater. Struct. 2023, 47, 745–765. [Google Scholar] [CrossRef]
- Xu, H.; Yin, G.; Tong, X.; Lv, S. Influence of Shot Peening on the Bending Fatigue Performance of TM210A Steel. J. Mater. Eng. Perform. 2023, 32, 8075–8084. [Google Scholar] [CrossRef]
- Pertoll, T.; Buzzi, C.; Leitner, M.; Boronkai, L. Application of local fatigue strength approach to assess and optimise the impact of deep rolling on the fatigue performance of railway axles. Int. J. Fatigue 2024, 185, 108335. [Google Scholar] [CrossRef]
- Genel, K.; Demirkol, M. Effect of case depth on fatigue performance of AISI 8620 carburized steel. Int. J. Fatigue 1999, 21, 207–212. [Google Scholar] [CrossRef]
A | |||
C | Si | Mn | V |
0.34–0.41 | 0.15–0.80 | 1.20–1.60 | 0.08–0.20 |
B | |||
Yield Strength (MPa) | Ultimate Strength (MPa) | Elongation at rupture A (%) | Young’s modulus E (MPa) |
≥580 | ≥850 | ≥10 | 210,000 |
Tension–Compression | Bending | Torsion | ||||
---|---|---|---|---|---|---|
Stress Ratio | ||||||
Temperature | C | C | C | C | C | |
Specimen | ||||||
unnotched, untreated Rz1 | ||||||
unnotched, hardened Rz1 | ||||||
notched, untreated Rz1 | ||||||
notched, hardened Rz1 |
Safety S | Variant 1 | Variant 2 | Variant 3 |
---|---|---|---|
Fatigue approach | |||
Component test | |||
Difference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobberke, D.; Leitner, M.; Wiebesiek, J.; Fröschl, J. Layer Approach to Model Fatigue Strength of Surface-Hardened Components. Metals 2024, 14, 754. https://doi.org/10.3390/met14070754
Dobberke D, Leitner M, Wiebesiek J, Fröschl J. Layer Approach to Model Fatigue Strength of Surface-Hardened Components. Metals. 2024; 14(7):754. https://doi.org/10.3390/met14070754
Chicago/Turabian StyleDobberke, Dénes, Martin Leitner, Jens Wiebesiek, and Jürgen Fröschl. 2024. "Layer Approach to Model Fatigue Strength of Surface-Hardened Components" Metals 14, no. 7: 754. https://doi.org/10.3390/met14070754
APA StyleDobberke, D., Leitner, M., Wiebesiek, J., & Fröschl, J. (2024). Layer Approach to Model Fatigue Strength of Surface-Hardened Components. Metals, 14(7), 754. https://doi.org/10.3390/met14070754