A Study on the Optimal Powder Metallurgy Process to Obtain Suitable Material Properties of Soft Magnetic Composite Materials for Electric Vehicles
Abstract
:1. Introduction
- (1)
- Identified the characteristics of each SMC material by testing their material properties.
- (2)
- Analyzed the process impact through finite element method (FEM) analysis based on material properties using experimental design methods.
- (3)
- Derived optimal process conditions by calculating the signal-to-noise ratio (SNR).
- (4)
- Verified reliability by manufacturing toroidal model products for each SMC material and comparing the actual products with the analysis results.
2. Materials and Methods
2.1. Testing Material Properties
2.1.1. Methods for Testing Properties
2.1.2. AncorLam/AncorLam HR
2.1.3. Fe-6.5wt.%Si
2.1.4. SMCs Powder Compaction Simulation
2.2. Yield Criteria for Porous Materials
2.3. Taguchi Experimental Design
3. Simulation Conditions
3.1. Analysis Model
3.2. DOE Factor and Level Settings
4. Result
4.1. Simulation Results
4.2. DOE Results
4.3. Optimal Condition Simulation
4.4. Validation of Toroidal Core Production
4.4.1. Density Analysis
4.4.2. SEM Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Průša, F.; Proshchenko, O.; Školáková, A.; Kučera, V.; Laufek, F. Properties of FeAlSi-X-Y Alloys (X, Y = Ni, Mo) Prepared by Mechanical Alloying and Spark Plasma Sintering. Materials 2020, 13, 292. [Google Scholar] [CrossRef] [PubMed]
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Guo, Y.; Ba, X.; Liu, L.; Lu, H.; Lei, G.; Yin, W.; Zhu, J. A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives. Energies 2023, 16, 2053. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, P.; Yan, B. Enhanced Soft Magnetic Properties of Iron-Based Powder Cores with Co-Existence of Fe3O4–MnZnFe2O4 Nanoparticles. Metals 2018, 8, 702. [Google Scholar] [CrossRef]
- Persson, M.; Jansson, P. Advances in Powder Metallurgy Soft Magnetic Composite Materials for Electrical Machines; IET Digital Library: London, UK, 1995. [Google Scholar]
- Boehm, A.; Hahn, I. Comparison of soft magnetic composites (SMCs) and electrical steel. In Proceedings of the 2012 2nd International Electric Drives Production Conference (EDPC), Nuremberg, Germany, 15–18 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6. [Google Scholar]
- Sadeghi, B.; Cavaliere, P. Progress of flake powder metallurgy research. Metals 2021, 11, 931. [Google Scholar] [CrossRef]
- Huang, P.Y. Principles of Powder Metallurgy; China Metallurgy & Industry Press: Beijing, China, 1997. [Google Scholar]
- Saxena, A.; Saxena, K.K.; Jain, V.K.; Rajput, S.; Pathak, B. A review of reinforcements and process parameters for powder metallurgy-processed metal matrix composites. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Li, S.; Peng, K.; Zou, L. The improved magnetic properties of FeSi powders cores composed with different size particles. J. Mater. Sci. Mater. Electron. 2022, 33, 607–616. [Google Scholar] [CrossRef]
- Strondl, A.; Lyckfeldt, O.; Brodin, H.; Ackelid, U. Characterization and control of powder properties for additive manufacturing. Jom 2015, 67, 549–554. [Google Scholar] [CrossRef]
- Blumenthal, W.R.; Sheinberg, H.; Bingert, S.A. Compaction issues in powder metallurgy. MRS Bull. 1997, 22, 29–33. [Google Scholar] [CrossRef]
- Hammi, Y.; Stone, T.Y.; Horstemeyer, M.F. Constitutive modeling of metal powder behavior during compaction. SAE Trans. 2005, 114, 293–299. [Google Scholar]
- Bai, Y.; Li, L.; Fu, L.; Wang, Q. A review on high velocity compaction mechanism of powder metallurgy. Sci. Prog. 2021, 104, 00368504211016945. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhang, Y.; Wang, R.; Wei, F.; Zeng, L.; Liu, M. Finite Element Modeling and Optimization Analysis of Cutting Force in Powder Metallurgy Green Compacts. Processes 2023, 11, 3186. [Google Scholar] [CrossRef]
- Kim, H.-R.; Lee, D.; Yang, S.; Kwon, Y.-T.; Kim, J.; Kim, Y.; Jeong, J.-W. Optimizing Annealing Temperature Control for Enhanced Magnetic Properties in Fe-Si-B Amorphous Flake Powder Cores. Metals 2023, 13, 2016. [Google Scholar] [CrossRef]
- Nayak, K.C.; Rane, K.K.; Date, P.P.; Srivatsan, T.S. Synthesis of an aluminum alloy metal matrix composite using powder metallurgy: Role of sintering parameters. Appl. Sci. 2022, 12, 8843. [Google Scholar] [CrossRef]
- Kotnala, R.K.; Ahmad, S.; Ahmed, A.S.; Shah, J.; Azam, A. Investigation of structural, dielectric, and magnetic properties of hard and soft mixed ferrite composites. J. Appl. Phys. 2012, 112, 054323. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Zhang, X.; Si, Y.; Yu, J.; Ding, B. Super strong, shear resistant, and highly elastic lamellar structured ceramic nanofibrous aerogels for thermal insulation. J. Mater. Chem. A 2021, 9, 27415–27423. [Google Scholar] [CrossRef]
- Lu, L.; Wu, W.; Yu, X.; Jin, Z. High-temperature superconducting non-insulation closed-loop coils for electro-dynamic suspension system. Electronics 2021, 10, 1980. [Google Scholar] [CrossRef]
- Yuan, X.; Qu, X.; Yin, H.; Feng, Z.; Tang, M.; Yan, Z.; Tan, Z. Effects of sintering temperature on densification, microstructure and mechanical properties of Al-based alloy by high-velocity compaction. Metals 2021, 11, 218. [Google Scholar] [CrossRef]
- Burgess, W.; Devkota, J.; Howard, B. Wet chemistry-synthesized Fe/mixed ferrite soft magnetic composites for high-frequency power conversion. AIP Adv. 2024, 14, 025212. [Google Scholar] [CrossRef]
- Liu, C.; Lu, J.; Wang, Y.; Lei, G.; Zhu, J.; Guo, Y. Design Issues for claw pole machines with soft magnetic composite cores. Energies 2018, 11, 1998. [Google Scholar] [CrossRef]
- Pošković, E.; Franchini, F.; Ferraris, L.; Carosio, F.; Grande, M.A. Rapid characterization method for SMC materials for a preliminary selection. Appl. Sci. 2021, 11, 12133. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, L.; Ba, X.; Lu, H.; Lei, G.; Yin, W.; Zhu, J. Designing high-power-density electric motors for electric vehicles with advanced magnetic materials. World Electr. Veh. J. 2023, 14, 114. [Google Scholar] [CrossRef]
- Pošković, E.; Franchini, F.; Ferraris, L.; Fracchia, E.; Bidulska, J.; Carosio, F.; Bidulsky, R.; Grande, M.A. Recent advances in multi-functional coatings for soft magnetic composites. Materials 2021, 14, 6844. [Google Scholar] [CrossRef] [PubMed]
- ASTM E209; Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates. ASTM: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/e0209-00.html (accessed on 16 August 2017).
- KS-L-1604; Fine Ceramics—Determination of Thermal Diffusivity, Specific Heat Capacity, and Thermal Conductivity of Monolithic Ceramics by Laser Flash Method. Korean Agency for Technology and Standards: Eumseong-gun, Republic of Korea, 2022.
- ASTM E228; Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer. ASTM: West Conshohocken, PA, USA, 2022. Available online: https://www.astm.org/e0228-22.html (accessed on 9 January 2023).
- Kim, J.; Lee, S. Study on Compressibility According to Mixing Ratio and Milling Time of Fe-6.5 wt.% Si. Materials 2024, 17, 1723. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Ganesh Narayanan, R.; Dixit, U.S. Implementation of Yield Criteria in ABAQUS for Simulations of Deep Drawing: A Review and Preliminary Results. Manuf. Eng. Sel. Proc. CPIE 2019, 2020, 575–588. [Google Scholar]
- Luo, X.; Liu, Y.; Mo, Z.; Gu, C. Semi-solid powder rolling of AA7050 alloy strips: Densification and deformation behaviors. Metall. Mater. Trans. A 2015, 46, 2185–2193. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X. Deduction of a porosity-dependent yield criterion and its geometrical description for porous materials. Int. J. Mech. Sci. 2014, 89, 58–64. [Google Scholar] [CrossRef]
- Ternero, F.; Rosa, L.G.; Urban, P.; Montes, J.M.; Cuevas, F.G. Influence of the total porosity on the properties of sintered materials—A review. Metals 2021, 11, 730. [Google Scholar] [CrossRef]
- Liu, C.; Lei, G.; Ma, B.; Guo, Y.; Zhu, J. Robust design of a low-cost permanent magnet motor with soft magnetic composite cores considering the manufacturing process and tolerances. Energies 2018, 11, 2025. [Google Scholar] [CrossRef]
- Tsui, K.-L. An overview of Taguchi method and newly developed statistical methods for robust design. Iie Trans. 1992, 24, 44–57. [Google Scholar] [CrossRef]
- Lee, S.-L.; Kim, J.-H.; Lee, S.-B. A Study on mPPO Development and Injection Molding Process for Lightweight Stack Enclosure of FCEV. Polymers 2023, 15, 1303. [Google Scholar] [CrossRef] [PubMed]
- Hrairi, M.; Chtourou, H.; Gakwaya, A.; Guillot, M. Modeling the powder compaction process using the finite element method and inverse optimization. Int. J. Adv. Manuf. Technol. 2011, 56, 631–647. [Google Scholar] [CrossRef]
- KS-D-0033; Sintering Density Test Method for Metal Sintered Body. Korean Agency for Technology and Standards: Eumseong-gun, Republic of Korea, 2021.
- Grigoriev, S.N.; Dmitriev, A.M.; Korobova, N.V.; Fedorov, S.V. A cold-pressing method combining axial and shear flow of powder compaction to produce high-density iron parts. Technologies 2019, 7, 70. [Google Scholar] [CrossRef]
Temperature (°C) | Thermal Diffusivity (mm2/s) | Specific Heat (J/gK) | Thermal Conductivity (W/mK) |
---|---|---|---|
25 | 0.840 | 0.543 | 3.3 |
100 | 0.765 | 0.590 | 3.3 |
200 | 0.696 | 0.627 | 3.2 |
300 | 0.662 | 0.613 | 3.0 |
400 | 0.646 | 0.626 | 3.0 |
500 | 0.651 | 0.664 | 3.2 |
Temperature (°C) | Coefficient of Thermal Expansion (1 × 10−6/K) |
---|---|
100 | 13.244 |
200 | 13.556 |
300 | 13.922 |
400 | 14.244 |
500 | 14.528 |
Temperature (°C) | Thermal Diffusivity (mm2/s) | Specific Heat (J/gK) | Thermal Conductivity (W/mK) |
---|---|---|---|
25 | 11.822 | 0.452 | 26.7 |
100 | 10.328 | 0.498 | 25.7 |
200 | 8.698 | 0.546 | 23.7 |
300 | 7.354 | 0.560 | 20.6 |
400 | 6.156 | 0.580 | 17.8 |
500 | 5.065 | 0.640 | 16.2 |
Temperature (°C) | Coefficient of Thermal Expansion (1 × 10−6/K) |
---|---|
100 | 13.554 |
200 | 13.639 |
300 | 14.095 |
400 | 14.436 |
500 | 14.719 |
Temperature (°C) | Thermal Diffusivity (mm2/s) | Specific Heat (J/gK) | Thermal Conductivity (W/mK) |
---|---|---|---|
25 | 4.201 | 0.452 | 14.2 |
100 | 4.340 | 0.540 | 17.6 |
200 | 4.497 | 0.565 | 19.0 |
300 | 4.592 | 0.580 | 20.0 |
400 | 4.601 | 0.597 | 20.6 |
500 | 4.514 | 0.639 | 21.6 |
Temperature (°C) | Coefficient of Thermal Expansion [1 × 10−6/K] |
---|---|
100 | 1.127 |
200 | 1.190 |
300 | 1.260 |
400 | 1.307 |
500 | 1.354 |
Title 1 | AncorLam | AncorLam HR | Fe-6.5wt.%Si |
---|---|---|---|
Apparent density [] | 2.99 | 2.94 | 3.6 |
Initial relative density | 0.3636 | 0.3576 | 0.4378 |
Powder loading height [mm] | 14.77 | 15.02 | 12.27 |
Factor | Description | Level | ||
---|---|---|---|---|
1 | 2 | 3 | ||
A | Types of SMCs | AncorLam | AncorLam HR | Fe-6.5.wt%Si |
B | Molding temperature [°C] | RT | 60 | 90 |
C | CPMs [cycles/min] | 5 | 10 | 15 |
Simulation No. | A | B | C |
---|---|---|---|
1 | AncorLam | RT | 5 |
2 | AncorLam | 60 | 10 |
3 | AncorLam | 90 | 15 |
4 | AncorLam HR | RT | 10 |
5 | AncorLam HR | 60 | 15 |
6 | AncorLam HR | 90 | 5 |
7 | Fe-6.5.wt%Si | RT | 15 |
8 | Fe-6.5.wt%Si | 60 | 5 |
9 | Fe-6.5.wt%Si | 90 | 10 |
CPMs [Cycles/min] | Punch Speed [mm/s] | ||
---|---|---|---|
AncorLam | AncorLam HR | Fe-6.5.wt%Si | |
5 | 1.23 | 1.25 | 1.02 |
10 | 2.46 | 2.50 | 2.05 |
15 | 3.70 | 3.76 | 3.07 |
Simulation No. | Maximum Relative Density | Minimum Relative Density | Maximum–Minimum Relative Density | Average Effective Stress [MPa] | Average Mean Stress [MPa] |
---|---|---|---|---|---|
1 | 0.999 | 0.819 | 0.180 | 369.126 | −430.527 |
2 | 0.958 | 0.810 | 0.149 | 367.445 | −425.615 |
3 | 0.955 | 0.813 | 0.142 | 364.435 | −416.780 |
4 | 0.953 | 0.826 | 0.126 | 201.166 | −234.756 |
5 | 0.962 | 0.780 | 0.162 | 187.397 | −217.857 |
6 | 0.959 | 0.825 | 0.134 | 179.337 | −208.827 |
7 | 0.989 | 0.818 | 0.171 | 1884.632 | −2173.698 |
8 | 0.954 | 0.828 | 0.126 | 1833.030 | −2101.284 |
9 | 0.999 | 0.802 | 0.198 | 1795.470 | −2076.423 |
Simulation No. | Maximum–Minimum Relative Density | SNR |
---|---|---|
1 | 0.180 | 14.86 |
2 | 0.149 | 16.56 |
3 | 0.142 | 16.98 |
4 | 0.126 | 17.97 |
5 | 0.162 | 15.79 |
6 | 0.134 | 17.46 |
7 | 0.171 | 15.33 |
8 | 0.126 | 17.98 |
9 | 0.198 | 14.08 |
Description | Types of SMCs | Molding Temperature [°C] | CPMs [Cycles/min] | |
---|---|---|---|---|
Level | 1 | 16.13 | 16.05 | 16.76 |
2 | 17.07 | 16.77 | 16.20 | |
3 | 15.79 | 16.17 | 16.03 | |
Delta | 1.28 | 0.72 | 0.73 | |
Rank | 1 | 3 | 2 |
Simulation No. | Maximum Relative Density | Minimum Relative Density | Maximum–Minimum Relative Density | Average Effective Stress [MPa] | Average Mean Stress [MPa] |
---|---|---|---|---|---|
Optimal | 0.944 | 0.838 | 0.106 | 190.151 | −218.09 |
8 | 0.954 | 0.828 | 0.126 | 1833.03 | −2101.28 |
Linear Dimension | Specimen 1 | Specimen 2 | Specimen 3 |
---|---|---|---|
Outer diameter [mm] | 20.085 | 20.084 | 20.085 |
Inner diameter [mm] | 12.655 | 12.649 | 12.660 |
Height [mm] | 6.096 | 6.175 | 6.089 |
1154 | 1169 | 1152 | |
7.465 | 7.397 | 7.438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Lee, S. A Study on the Optimal Powder Metallurgy Process to Obtain Suitable Material Properties of Soft Magnetic Composite Materials for Electric Vehicles. Metals 2024, 14, 815. https://doi.org/10.3390/met14070815
Kang S, Lee S. A Study on the Optimal Powder Metallurgy Process to Obtain Suitable Material Properties of Soft Magnetic Composite Materials for Electric Vehicles. Metals. 2024; 14(7):815. https://doi.org/10.3390/met14070815
Chicago/Turabian StyleKang, Seongsu, and Seonbong Lee. 2024. "A Study on the Optimal Powder Metallurgy Process to Obtain Suitable Material Properties of Soft Magnetic Composite Materials for Electric Vehicles" Metals 14, no. 7: 815. https://doi.org/10.3390/met14070815
APA StyleKang, S., & Lee, S. (2024). A Study on the Optimal Powder Metallurgy Process to Obtain Suitable Material Properties of Soft Magnetic Composite Materials for Electric Vehicles. Metals, 14(7), 815. https://doi.org/10.3390/met14070815