Role of Stabilization Heat Treatment Inducing γ′-γ″ Co-Precipitates and η Phase on Tensile Behaviors of Inconel 706
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials and Heat Treatments
2.2. Mechanical Testing
2.3. Microstructure Characterization
3. Results
3.1. Microstructure Characterization
3.2. Tensile Properties
4. Discussion
4.1. Effect of Stabilization Treatment on the Microstructures
4.2. Effect of Stabilization Treatment on Tensile Properties
5. Conclusions
- (1)
- The yield strength and elongation of alloy IN706 decrease with increasing stabilization time.
- (2)
- As the stabilization time increases (from 0 h to 5 h), the η phase undergoes a transition from granular to rod-shaped and needle-like morphology, accompanied by an increase in both size and quantity. Simultaneously, the size of γ′-γ″ co-precipitates increases while their overall number decreases, and the presence of PFZ was found in S3 and S5 samples.
- (3)
- The yield strength of the samples decreases gradually with increasing stabilization time. This phenomenon is due to the influence of the size and volume fraction of γ′-γ″ co-precipitates on the alloy-strengthening effect. With the increase in stabilization time, the size of γ′-γ″ co-precipitates becomes larger and the volume fraction becomes smaller, leading to the decrease in their yield strength.
- (4)
- During room-temperature and in situ tensile tests, it was found that the decrease in elongation during stabilization treatment could be attributed to the presence of η phase at the grain boundaries, as the presence of the η phase on the grain boundaries tends to induce stress concentration, which leads to cracks at the grain boundaries, resulting in a decrease in the plasticity of the samples.
- (5)
- These results can provide theoretical guidance for the development and application of high-performance IN706 alloys.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oh, H.; Kim, S.; Kim, J.G.; Taleghani, F.; Kim, S. Low cycle fatigue behavior of Inconel 706 at 650 °C. J. Mater. Res. Technol. 2022, 17, 2624–2635. [Google Scholar] [CrossRef]
- Sharma, P.; Chakradhar, D.; Narendranath, S. Effect of wire material on productivity and surface integrity of WEDM-processed Inconel 706 for aircraft application. J. Mater. Eng. Perform. 2016, 25, 3672–3681. [Google Scholar] [CrossRef]
- Sharma, P.; Chakradhar, D.; Narendranath, S. Analysis and optimization of WEDM performance characteristics of Inconel 706 for aerospace application. Silicon 2018, 10, 921–930. [Google Scholar] [CrossRef]
- Mukherji, D.; Strunz, P.; Del Genovese, D.; Gilles, R.; Rösler, J.; Wiedenmann, A. Investigation of microstructural changes in Inconel 706 at high temperatures by in-situ small-angle neutron scattering. Metall. Mater. Trans. A 2003, 34, 2781–2792. [Google Scholar] [CrossRef]
- Hoelzel, M.; Del Genovese, D.; Gilles, R.; Mukherji, D.; Toebbens, D.M.; Roesler, J.; Fuess, H. Phase analysis and lattice mismatches in superalloys DT706 and Inconel 706. Phys. B Condens. Matter 2006, 385, 594–596. [Google Scholar] [CrossRef]
- Xu, N.; Kang, R.; Zhang, B.; Zhang, Y.; Wang, C.; Bao, Y.; Dong, Z. Improving fatigue properties of normal direction ultrasonic vibration assisted face grinding Inconel 718 by regulating machined surface integrity. Int. J. Extrem. Manuf. 2024, 6, 035101. [Google Scholar] [CrossRef]
- Heck, K.A. The time-temperature-transformation behavior of alloy 706. Superalloys 1994, 625, 393–404. [Google Scholar]
- Slama, C.; Abdellaoui, M. Precipitation kinetics of γ′ and γ″ particles in Inconel 718 and its influence on mechanical properties. Mater. Today Commun. 2024, 38, 108158. [Google Scholar] [CrossRef]
- Rösler, J.; Muller, S.; Genovese, D.D.; Götting, M. Design of Inconel 706 for Improved Creep Crack Growth Resistance. Superalloys 2001, 718, 523–534. [Google Scholar]
- Yenusah, C.O.; Ji, Y.; Liu, Y.; Stone, T.W.; Horstemeyer, M.F.; Chen, L.Q.; Chen, L. Three-dimensional Phase-field simulation of γ″ precipitation kinetics in Inconel 625 during heat treatment. Comput. Mater. Sci. 2021, 187, 110123. [Google Scholar] [CrossRef]
- Qin, H.; Bi, Z.; Yu, H.; Feng, G.; Du, J.; Zhang, J. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging. J. Alloys Compd. 2018, 740, 997–1006. [Google Scholar] [CrossRef]
- Ding, J.; Xue, S.; Shang, Z.; Li, J.; Zhang, Y.; Su, R.; Niu, T.; Wang, H.; Zhang, X. Characterization of precipitation in gradient Inconel 718 superalloy. Mater. Sci. Eng. A 2021, 804, 140718. [Google Scholar] [CrossRef]
- Chen, K.; Dong, J.; Yao, Z. Creep failure and damage mechanism of Inconel 718 alloy at 800–900 °C. Met. Mater. Int. 2021, 27, 970–984. [Google Scholar] [CrossRef]
- Theska, F.; Nomoto, K.; Godor, F.; Oberwinkler, B.; Stanojevic, A.; Ringer, S.; Primig, S. On the early stages of precipitation during direct ageing of alloy 718. Acta Mater. 2020, 188, 492–503. [Google Scholar] [CrossRef]
- Galizoni, B.B.; Couto, A.A.; Reis, D.A.P. Heat Treatments Effects on Nickel-Based Superalloy Inconel 713C. Metals 2019, 9, 47. [Google Scholar] [CrossRef]
- Theska, F.; Stanojevic, A.; Oberwinkler, B.; Primig, S. Microstructure-property relationships in directly aged Alloy 718 turbine disks. Mater. Sci. Eng. A 2020, 776, 138967. [Google Scholar] [CrossRef]
- Remy, L.; Laniesse, J.; Aubert, H. Precipitation behavior and creep-fracture of 706-type alloys. Mater. Sci. Eng. 1979, 38, 227–239. [Google Scholar] [CrossRef]
- Ducki, K.J. Effect of heat treatment on the structure and creep resistance of austenitic Fe–Ni alloy. Arch. Mater. 2011, 47, 33–40. [Google Scholar]
- Chen, W.; Chaturvedi, M.C. Dependence of creep fracture of Inconel 718 on grain boundary precipitates. Acta Mater. 1997, 45, 2735–2746. [Google Scholar] [CrossRef]
- Shibata, T.; Shudo, Y.; Takahashi, T.; Yoshino, Y.; Ishiguro, T. Effect of stabilizing treatment onprecipitation behavior of alloy 706. Superalloys 1996, 627–636. [Google Scholar]
- Kim, C.; Park, J.; Hong, H.U.; Gu, J.; Song, Y. Role of stabilization heat treatment inducing γ′-γ″ co-precipitates and grain boundary η phase on tensile and creep behaviors of Inconel 706. J. Alloys Compd. 2022, 900, 163479. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, L.; Zhao, D.; Si, T.; Xu, Y.; Wu, Y.; Guo, Z.; Fu, Z.; Wang, W.; Sun, W. Comparison study of microstructure and mechanical properties of standard and direct-aging heat treated superalloy Inconel 706. Mater. Sci. Eng. A 2022, 839, 142836. [Google Scholar] [CrossRef]
- Zhao, J.C.; Ravikumar, V.; Beltran, A.M. Phase precipitation and phase stability in Nimonic 263. Metall. Mater. Trans. A 2001, 32, 1271–1282. [Google Scholar] [CrossRef]
- Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S. Precipitation of the DELTA-Ni3Nb phase in 2 Nickel-base superalloys. Metall. Mater. Trans. A 1988, 19, 453–465. [Google Scholar] [CrossRef]
- Theska, F.; Stanojevic, A.; Oberwinkler, B.; Ringer, S.P.; Primig, S. On conventional versus direct ageing of Alloy 718. Acta Mater. 2018, 156, 116–124. [Google Scholar] [CrossRef]
- Yang, F.; Dong, L.; Hu, X.; Zhou, X.; Xie, Z.; Fang, F. Effect of solution treatment temperature upon the microstructure and mechanical properties of hot rolled Inconel 625 alloy. J. Mater. Sci. 2020, 55, 5613–5626. [Google Scholar] [CrossRef]
- Ran, Q.; Xiang, S.; Tan, Y. Improving mechanical properties of GH4169 alloys by reversing the deformation and aging sequence. Adv. Eng. Mater. 2021, 23, 2100386. [Google Scholar] [CrossRef]
- Choi, Y.S.; Cho, K.M.; Nam, D.G.; Choi, D.I. Modeling the Hall-Petch Relation of Ni-Base Polycrystalline Superalloys Using Strain-Gradient Crystal Plasticity Finite Element Method. Korean J. Mater. Res. 2015, 25, 81–89. [Google Scholar]
- Berbenni, S.; Wagner, F.; Allain-Bonasso, N. On the roles of grain size dispersion and microscale Hall-Petch relation on the plastic behavior of polycrystalline metals. Mater. Trans. 2014, 55, 39–43. [Google Scholar] [CrossRef]
- Roth, H.A.; Davis, C.L.; Thomson, R.C. Modeling solid solution strengthening in nickel alloys. Metall. Mater. Trans. A 1997, 28, 1329–1335. [Google Scholar] [CrossRef]
Samples | Heat Treatment | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation (%) | References |
---|---|---|---|---|---|
S0 | Stabilization 0 h | 1031 | 1258 | 28 | Current study |
S1 | Stabilization 1 h | 982 | 1242 | 24 | Current study |
S3 | Stabilization 3 h | 997 | 1256 | 23 | Current study |
S5 | Stabilization 5 h | 980 | 1240 | 20 | Current study |
S0-1 | Stabilization 0 h | 1085 | 1262 | 22 | [1] |
S3-1 | Stabilization 3 h | 979 | 1245 | 17 | [1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Gao, L.; Wu, H.; Miao, K.; Wu, H.; Li, R.; Li, X. Role of Stabilization Heat Treatment Inducing γ′-γ″ Co-Precipitates and η Phase on Tensile Behaviors of Inconel 706. Metals 2024, 14, 826. https://doi.org/10.3390/met14070826
Liu C, Gao L, Wu H, Miao K, Wu H, Li R, Li X. Role of Stabilization Heat Treatment Inducing γ′-γ″ Co-Precipitates and η Phase on Tensile Behaviors of Inconel 706. Metals. 2024; 14(7):826. https://doi.org/10.3390/met14070826
Chicago/Turabian StyleLiu, Chenglu, Lei Gao, Hao Wu, Kesong Miao, He Wu, Rengeng Li, and Xuewen Li. 2024. "Role of Stabilization Heat Treatment Inducing γ′-γ″ Co-Precipitates and η Phase on Tensile Behaviors of Inconel 706" Metals 14, no. 7: 826. https://doi.org/10.3390/met14070826
APA StyleLiu, C., Gao, L., Wu, H., Miao, K., Wu, H., Li, R., & Li, X. (2024). Role of Stabilization Heat Treatment Inducing γ′-γ″ Co-Precipitates and η Phase on Tensile Behaviors of Inconel 706. Metals, 14(7), 826. https://doi.org/10.3390/met14070826