Magnetocaloric Properties of Melt-Extracted Medium Entropy Gd33Co33Al34 Microfibers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Composition and Microstructure
3.2. Magnetothermal Properties of Gd33Co33Al34 Fibers
3.3. Analysis of Phase Transition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, A.; Bahl, C.R.H.; Bjørk, R.; Engelbrecht, K.; Nielsen, K.K.; Pryds, N. Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2012, 2, 1288–1318. [Google Scholar] [CrossRef]
- Duc, N.T.M.; Hung, C.; Huong, N.T.; Phan, M. Magnetic Interactions and Magnetocaloric Effect in (La0.5Pr0.5)0.6Ba0.4MnO3: Effect of A-Site Co doping. J. Electron. Mater. 2020, 49, 2596–2607. [Google Scholar] [CrossRef]
- Yüzüak, E.; Yüzüak, G.D.; Dinçer, İ.; Elerman, Y. 4.13 Magnetic Energy Conversion. In Comprehensive Energy Systems; Dincer, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 4, pp. 573–597. [Google Scholar] [CrossRef]
- Law, J.Y.; Franco, V.; Keblinski, P.; Ramanujan, R.V. Active transient cooling by magnetocaloric materials. Appl. Therm. Eng. 2013, 52, 17–23. [Google Scholar] [CrossRef]
- Kitanovski, A. Energy Applications of Magnetocaloric Materials. Adv. Energy Mater. 2020, 10, 1903741. [Google Scholar] [CrossRef]
- Gombi, S.M.; Sahu, D. A Review on Magneto-Caloric Materials for Room Temperature Refrigeration. Int. J. Automot. Mech. Eng. 2020, 17, 7805–7815. [Google Scholar] [CrossRef]
- Utaka, Y.; Hu, K.; Chen, Z.; Zhao, Y. Application of simple and effective thermal switch for solid-state magnetic refrigeration at room temperature. Appl. Therm. Eng. 2019, 155, 196–205. [Google Scholar] [CrossRef]
- Vuarnoz, D.; Kawanami, T. Numerical analysis of a reciprocating active magnetic regenerator made of gadolinium wires. Appl. Therm. Eng. 2012, 37, 388–395. [Google Scholar] [CrossRef]
- Aprea, C.; Maiorino, A. A flexible numerical model to study an active magnetic refrigerator for near room temperature applications. Appl. Energy 2010, 87, 2690–2698. [Google Scholar] [CrossRef]
- Zhang, C.L.; Wang, D.H.; Han, Z.D.; Xuan, H.C.; Gu, B.X.; Du, Y.W. Large magnetic entropy changes in Gd-Co amorphous ribbons. J. Appl. Phys. 2009, 105, 13912. [Google Scholar] [CrossRef]
- Du, J.; Zheng, Q.; Li, Y.B.; Zhang, Q.; Li, D.; Zhang, Z.D. Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses. J. Appl. Phys. 2008, 103, 23918. [Google Scholar] [CrossRef]
- Qin, F.X.; Bingham, N.S.; Wang, H.; Peng, H.X.; Sun, J.F.; Franco, V.; Yu, S.C.; Srikanth, H.; Phan, M.H. Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction. Acta Mater. 2013, 61, 1284–1293. [Google Scholar] [CrossRef]
- Manchón-Gordón, A.F.; Ipus, J.J.; Blázquez, J.S.; Conde, C.F.; Conde, A. Influence of milling time on the homogeneity and magnetism of a Fe70Zr30 partially amorphous alloy: Distribution of Curie temperatures. Materials 2020, 13, 490. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zou, M. Magnetic and magnetocaloric properties of ternary Gd–Co–Al bulk metallic glasses. J. Alloys Compd. 2011, 509, 4613–4616. [Google Scholar] [CrossRef]
- Huo, J.; Huo, L.; Men, H.; Wang, X.; Inoue, A.; Wang, J.; Chang, C.; Li, R. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M = Fe, Co and Ni) high-entropy bulk metallic glasses. Intermetallics 2015, 58, 31–35. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Tong, X.; Zhang, H.; Wang, H.; Liu, X.J.; Ma, L.; Suo, H.L.; Lu, Z.P. Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 2017, 125, 481–489. [Google Scholar] [CrossRef]
- Bao, Y.; Shen, H.; Liang, J.; Yin, H.; Li, Z.; Huang, Y.; Sun, J. Manufacture and characterization of HoErCo medium-entropy alloy microwires with excellent magnetic entropy change. J. Non-Cryst. Solids 2021, 556, 120570. [Google Scholar] [CrossRef]
- Yin, H.; Law, J.Y.; Huang, Y.; Shen, H.; Jiang, S.; Guo, S.; Franco, V.; Sun, J. Enhancing the magnetocaloric response of high-entropy metallic-glass by microstructural control. Sci. China Mater. 2022, 65, 1134–1142. [Google Scholar] [CrossRef]
- Shen, H.; Wang, H.; Liu, J.; Xing, D.; Qin, F.; Cao, F.; Chen, D.; Liu, Y.; Sun, J. Enhanced magnetocaloric and mechanical properties of melt-extracted Gd55Al25Co20 micro-fibers. J. Alloys Compd. 2014, 603, 167–171. [Google Scholar] [CrossRef]
- Shen, H.X.; Duc, N.T.M.; Belliveau, H.; Luo, L.; Wang, Y.F.; Sun, J.F.; Qin, F.X.; Phan, M.H. Advanced magnetocaloric microwires: What does the future hold? Vietnam. J. Sci. Technol. Eng. 2023, 65, 14–24. [Google Scholar] [CrossRef]
- Shen, H.X.; Xing, D.W.; Llamazares, J.L.S.N.; Snchez-Valds, C.F.; Belliveau, H.; Wang, H.; Qin, F.X.; Liu, Y.F.; Sun, J.F.; Srikanth, H.; et al. Enhanced refrigerant capacity in Gd-Al-Co microwires with a biphase nanocrystalline/amorphous structure. App. Phys. Lett. 2016, 108, 092403. [Google Scholar] [CrossRef]
- Belliveau, H.F.; Yu, Y.Y.; Luo, Y.; Qin, F.X.; Wang, H.; Shen, H.X.; Sun, J.F.; Yu, S.C.; Srikanth, H.; Phan, M.H. Improving mechanical and magnetocaloric responses of amorphous melt-extracted Gd-based microwires via nanocrystallization. J. Alloys Compd. 2017, 692, 658–664. [Google Scholar] [CrossRef]
- Shen, H.; Wang, H.; Jingshun, L.; Cao, F.; Qin, F.; Xing, D.; Chen, D.; Liu, Y.; Sun, J. Enhanced magnetocaloric properties of melt-extracted GdAlCo metallic glass microwires. J. Magn. Magn. Mater. 2014, 372, 23–26. [Google Scholar] [CrossRef]
- Bao, Y.; Shen, H.X.; Liu, J.S.; Yin, H.; Gao, S.Y.; Liang, J.R.; Bahl, C.R.H.; Sun, J.F.; Engelbrecht, K. Magnetocaloric effect and microstructure of amorphous/nanocrystalline HoErFe melt-extracted microwires. Intermetallics 2020, 127, 106974. [Google Scholar] [CrossRef]
- Shen, H.X.; Luo, L.; Bao, Y.; Yin, H.; Jiang, S.D.; Zhang, L.Y.; Huang, Y.J.; Feng, S.J.; Xing, D.W.; Liu, J.S.; et al. New DyHoCo medium entropy amorphous microwires of large magnetic entropy change. J. Alloys Compd. 2020, 837, 155431. [Google Scholar] [CrossRef]
- Zheng, Z.G.; Tan, Z.C.; Yu, H.Y.; Zhang, J.L.; Zeng, D.C.; Franco, V. Structural, magnetic properties and magnetocaloric effect of Mn1.2Fe0.8P1−xSixB0.03 compounds. Mater. Res. Bull. 2016, 77, 29–34. [Google Scholar] [CrossRef]
- Manchon-Gord, A.F.; Ipus, J.J.; Moreno-Ramírez, L.M.; Blázquez, J.S.; Conde, C.F.; Franco, V.; Conde, A. Correction of the shape effect on magnetic entropy change in ball milled Fe70Zr30 alloys. J. Alloys Compd. 2018, 765, 437–443. [Google Scholar] [CrossRef]
- Amaral, J.S.; Silva, N.J.O.; Amaral, V.S. Estimating spontaneous magnetization from a mean field analysis of the magnetic entropy change. J. Magn. Magn. Mater. 2010, 322, 1569–1571. [Google Scholar] [CrossRef]
Composition | Gd33Co33Al34 | |||||
---|---|---|---|---|---|---|
µ0ΔH (T) | 0.5 T | 1 T | 2 T | 3 T | 4 T | 5 T |
−ΔSMmax (J/kg·K) | 1.08 | 1.85 | 3.10 | 4.12 | 5.04 | 5.90 |
Parameter | 0.5 T | 1 T | 2 T | 3 T | 4 T | 5 T |
---|---|---|---|---|---|---|
RCP | 46.13 | 106.85 | 284.67 | 397.57 | 507.00 | 611.72 |
RC | 33.10 | 77.69 | 202.78 | 299.71 | 394.87 | 487.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Shen, H.; Luo, L.; Liu, J.; Zhao, Z.; Zhang, L.; Sun, J.; Phan, M.-H. Magnetocaloric Properties of Melt-Extracted Medium Entropy Gd33Co33Al34 Microfibers. Metals 2024, 14, 880. https://doi.org/10.3390/met14080880
Zhang N, Shen H, Luo L, Liu J, Zhao Z, Zhang L, Sun J, Phan M-H. Magnetocaloric Properties of Melt-Extracted Medium Entropy Gd33Co33Al34 Microfibers. Metals. 2024; 14(8):880. https://doi.org/10.3390/met14080880
Chicago/Turabian StyleZhang, Ning, Hongxian Shen, Lin Luo, Jingshun Liu, Zijian Zhao, Lunyong Zhang, Jianfei Sun, and Manh-Huong Phan. 2024. "Magnetocaloric Properties of Melt-Extracted Medium Entropy Gd33Co33Al34 Microfibers" Metals 14, no. 8: 880. https://doi.org/10.3390/met14080880
APA StyleZhang, N., Shen, H., Luo, L., Liu, J., Zhao, Z., Zhang, L., Sun, J., & Phan, M. -H. (2024). Magnetocaloric Properties of Melt-Extracted Medium Entropy Gd33Co33Al34 Microfibers. Metals, 14(8), 880. https://doi.org/10.3390/met14080880