Study on Microstructure and High-Temperature Mechanical Properties of Al-Mg-Sc-Zr Alloy Processed by LPBF
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder and LPBF Parameters
Elements | Mg | Sc | Zr | Mn | Si | Al |
---|---|---|---|---|---|---|
wt% | 7.80 | 0.59 | 0.31 | 0.47 | 0.66 | Bal |
Laser Power | Scanning Speed | Layer Thickness | Hatching Distance | VED |
---|---|---|---|---|
400 W | 1250 mm/s | 50 μm | 120 μm | 53.33 J/mm3 |
2.2. Microstructure Characterization
2.3. Experimental Method of Mechanics
3. Results and Discussion
3.1. Microstructure Observations
3.2. Mechanical Properties
4. Conclusions
- The microstructure is characterized by neatly aligned melt pools, with the boundaries marked by fine equiaxed grains and the interiors by larger equiaxed grains, creating a distinct bimodal distribution. EBSD analysis indicates an even dislocation distribution across the alloy, devoid of any textural preference.
- Room-temperature tensile tests demonstrated that the heat-treated specimens achieved ultimate tensile strengths up to 560.6 MPa, coupled with an elongation of 11.1%. Tensile strengths for both untreated and treated samples were modestly higher in the H direction than in the Z direction, with the discrepancy being less than 5%. A progressive decrease in strength with increasing test temperature was observed, with values at 100 °C being 435.1 MPa and 25.8%, at 150 °C being 269.4 MPa and 20.1%, at 200 °C being 102.8 MPa and 47.9%, and at 250 °C being 54.0 MPa and 72.2%, respectively. This trend signifies a trade-off between strength and ductility with rising temperature, with the material exhibiting greater plasticity at elevated temperatures.
- Fracture surface analyses from tensile tests across the temperature range disclosed an abundance of dimples, indicative of ductile fracture behavior. The dimples are mainly attributed to the presence of the second-phase Al3(Sc, Zr) particles. Upon the application of substantial external forces, dislocations surrounding these particles become active again, leading to fracture when the forces surpass the interfacial bond strength between the particles and the aluminum matrix.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Li, G.; Chen, H.; Zhang, M.; Xi, L. Novel approach to additively manufacture high-strength Al alloys by laser powder bed fusion through addition of hybrid grain refiners. Addit. Manuf. 2021, 48, 102400. [Google Scholar] [CrossRef]
- Han, D.; Xiao, Y.; Chen, H.; Bian, Z.; Wu, Y.; Yang, H.; Wang, H.; Wang, H. Design, microstructure and thermal stability of a novel heat-resistant Al-Fe-Ni alloy manufactured by selective laser melting. J. Alloys Compd. 2021, 885, 160949. [Google Scholar]
- Li, Q.; Li, G.; Lin, X.; Zhu, D.; Jiang, J.; Shi, S.; Liu, F.; Huang, W.; Vanmeensel, K. Development of a high strength Zr/Sc/Hf-modified Al-Mn-Mg alloy using laser powder Bed fusion: Design of a heterogeneous microstructure incorporating synergistic multiple strengthening mechanisms. Addit. Manuf. 2022, 57, 102967. [Google Scholar] [CrossRef]
- Kotadia, H.R.; Gibbons, G.; Das, A.; Howes, P.D. A review of laser powder Bed fusion additive manufacturing of aluminum alloys: Microstructure and properties. Addit. Manuf. 2021, 46, 102155. [Google Scholar]
- Lim, C.H.; Li, H.; Krishnan, M.; Chen, K.; Li, J. Novel method of residual stress reduction for AlSi10Mg manufactured using selective laser melting without compromise of mechanical strength. Virtual Phys. Prototyp. 2023, 18, 4. [Google Scholar] [CrossRef]
- Tang, Z.; Wei, Q.; Gao, Z.; Yang, H.; Wang, A.; Wan, L.; Luo, C.; Wu, Y.; Wang, H.; Wang, H. 2000W blue laser directed energy deposition of AlSi7Mg: Process parameters, molten pool characteristics, and appearance defects. Virtual Phys. Prototyp. 2023, 18, 3. [Google Scholar] [CrossRef]
- Palm, F.; Leuschner, R.; Schubert, T.; Kieback, B. Scalmalloy®= A unique high strength ALMgSc type material concept processed by innovative technologies for aerospace applications. In Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM 2010, Florence, Italy, 10–14 October2010. [Google Scholar]
- Kuo, C.N.; Peng, P.C.; Liu, D.H.; Chao, C.Y. Microstructure evolution and mechanical property response of 3D-Printed Scalmalloy with different heat-treatment times at 325 °C. Metals 2021, 11, 555. [Google Scholar] [CrossRef]
- Schmidtke, K.; Palm, F.; Hawkins, A.; Emmelmann, C. Process and mechanical properties: Applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys. Procedia 2011, 12, 369–374. [Google Scholar] [CrossRef]
- Martucci, A.; Aversa, A.; Manfredi, D.; Bondioli, F.; Biamino, S.; Ugues, D.; Lombardi, M.; Fino, P. Low-power laser powder bed fusion processing of Scalmalloy®. Materials 2022, 15, 3123. [Google Scholar] [CrossRef]
- Li, D.; Wu, Y.; Geng, Z.; Zhang, J.; Chen, C.; Liu, X.; Liu, Y.; Zhou, K. High strength Al−Mg−Sc−Zr alloy with heterogeneous grain structure and intragranular precipitation produced by laser powder bed fusion. J. Alloys Compd. 2023, 939, 168722. [Google Scholar] [CrossRef]
- Jägle, E.A. Alloy Design for Additive Manufacturing. In DARE Annual Workshop 2016; University of Sheffield: Sheffield, UK, 2016. [Google Scholar]
- Carluccio, D.; Bermingham, M.J.; Zhang, Y.; StJohn, D.H.; Yang, K.; Rometsch, P.A.; Wu, X.; Dargusch, M.S. Grain refinement of laser remelted Al-7Si and 6061 aluminium alloys with Tibor® and scandium additions. J. Manuf. Process. 2018, 35, 715–720. [Google Scholar] [CrossRef]
- Spierings, A.B.; Dawson, K.; Heeling, T.; Uggowitzer, P.J.; Schäublin, R.; Palm, F.; Wegener, K. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting. Mater. Des. 2017, 115, 52–63. [Google Scholar] [CrossRef]
- Yang, K.V.; Shi, Y.; Palm, F.; Wu, X.; Rometsch, P. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting. Scr. Mater. 2018, 145, 113–117. [Google Scholar] [CrossRef]
- Spierings, A.B.; Dawson, K.; Kern, K.; Palm, F.; Wegener, K. SLM-processed Sc- and Zr- modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment. Mater. Sci. Eng. A 2017, 701, 264–273. [Google Scholar] [CrossRef]
- Ekubaru, Y.; Gokcekaya, O.; Ishimoto, T.; Sato, K.; Manabe, K.; Wang, P.; Nakano, T. Excellent strength–ductility balance of Sc-Zr-modified Al–Mg alloy by tuning bimodal microstructure via hatch spacing in laser powder bed fusion. Mater. Des. 2022, 221, 110976. [Google Scholar] [CrossRef]
- Cordova, L.; Bor, T.; de Smit, M.; Carmignato, S.; Campos, M.; Tinga, T. Effects of powder reuse on the microstructure and mechanical behaviour of Al–Mg–Sc–Zr alloy processed by laser powder bed fusion (LPBF). Addit. Manuf. 2020, 36, 101625. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Wang, J.; Kang, N.; Hu, Y.; Wang, D.; Li, H.; Huang, W.; Pan, F. Remarkable strength-impact toughness conflict in high-strength Al-Mg-Sc-Zr alloy fabricated via laser powder bed fusion additive manufacturing. Addit. Manuf. 2022, 59, 103093. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.C.; Liu, H.; Niu, X.; Lam, M.C.; Zhang, W.; Jin, X.; Chu, F.; Wu, X.; Cao, S. Strong and ductile Al–Mn–Mg–Sc–Zr alloy achieved in fabrication-rate enhanced laser powder bed fusion. Virtual Phys. Prototyp. 2023, 18, e2250769. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, C.; Guan, J.; Yuan, K. Study on the Effect of Remelt Scanning and Heat Treatment Processes on the Structure and Properties of Laser Powder Bed Fusion Formed Al-Mg-Sc-Zr Alloys. J. Phys. 2023, 2566, 012085. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Wu, J.; Chen, Z.; Zhang, B.; Li, Z.; Li, X.; Zhang, B. Anisotropic response in corrosion behavior of laser powder bed fusion Al-Mn-Mg-Sc-Zr alloy. Corros. Sci. 2022, 208, 110634. [Google Scholar] [CrossRef]
- Schliephake, D.; Lopes, C.; Eggeler, Y.M.; Chen, H.; Freudenberger, J.; Bayoumy, D.; Huang, A.J.; Kauffmann, A. Improved work hardening capability and ductility of an additively manufactured and deformed Al-Mn-Mg-Sc-Zr alloy. J. Alloys Compd. 2022, 924, 166499. [Google Scholar] [CrossRef]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Des. 2015, 65, 417–424. [Google Scholar] [CrossRef]
- Zou, Y.; Tan, C.; Qiu, Z.; Ma, W.; Kuang, M.; Zeng, D. Additively manufactured SiC-reinforced stainless steel with excellent strength and wear resistance. Addit. Manuf. 2021, 41, 101971. [Google Scholar] [CrossRef]
- Zou, T.; Mei, S.; Chen, M. Microstructure and Electrochemical Corrosion Properties of AlMgScZr Alloys Fabricated Using Selective Laser Melting. Zhongguo Jiguang 2023, 50, 85–94. [Google Scholar]
- Spierings, A.B.; Dawson, K.; Uggowitzer, P.J.; Wegener, K. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc-and Zr-modified Al-Mg alloys. Mater. Des. 2018, 140, 134–143. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, D.; Yang, J.; Dai, D.; Zhao, T.; Hong, C.; Gasser, A.; Poprawe, R. Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties. Addit. Manuf. 2018, 23, 1–12. [Google Scholar] [CrossRef]
- Deng, Y.; Peng, B.; Xu, G.; Pan, Q.; Yin, Z.; Ye, R.; Wang, Y.; Lu, L. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys. Mater. Sci. Eng. A 2015, 639, 500–513. [Google Scholar] [CrossRef]
- Sing, S.; Wiria, F.; Yeong, W. Selective laser melting of titanium alloy with 50 wt% tantalum: Effect of laser process parameters on part quality. Int. J. Refract. Met. Hard Mater. 2018, 77, 120–127. [Google Scholar] [CrossRef]
- Rometsch, P.; Zhong, H.; Nairn, K.M.; Jarvis, T.; Wu, X. Characterization of a laser-fabricated hypereutectic Al–Sc alloy bar. Scr. Mater. 2014, 87, 13–16. [Google Scholar] [CrossRef]
- Li, G.; Zhao, N.; Liu, T.; Li, J.; He, C.; Shi, C.; Liu, E.; Sha, J. Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al–Zn–Mg–Sc–Zr alloys. Mater. Sci. Eng. A 2014, 617, 219–227. [Google Scholar] [CrossRef]
- Hansen, N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Li, R.; Wang, M.; Li, Z.; Cao, P.; Yuan, T.; Zhu, H. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms. Acta Mater. 2020, 193, 83–98. [Google Scholar] [CrossRef]
- Shen, J.; Chen, B.; Wan, J.; Shen, J.; Li, J. Effect of annealing on microstructure and mechanical properties of an Al–Mg-Sc-Zr alloy. Mater. Sci. Eng. A 2022, 838, 142821. [Google Scholar] [CrossRef]
- Bayoumy, D.; Schliephake, D.; Dietrich, S.; Wu, X.H.; Zhu, Y.M.; Huang, A.J. Intensive processing optimization for achieving strong and ductile Al-Mn-Mg-Sc-Zr alloy produced by selective laser melting. Mater. Des. 2021, 198, 109317. [Google Scholar] [CrossRef]
- Bathias, C. Application of fracture mechanics to aluminum alloys selection. Eng. Fract. Mech. 1978, 10, 267–282. [Google Scholar] [CrossRef]
- Kuchariková, L.; Tillová, E.; Chalupová, M.; Uhríčik, M.; Pastierovičová, L.; Belan, J. The Fractographic Analysis of Tensile and Fatigue Fracture Surfaces in Secondary A356 Aluminum Alloy with a Higher Concentration of Iron. Defect. Diffus. Forum 2023, 422, 15–20. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhao, Z.; Zhang, Z. Development of “Fractography” and Research of Fracture Micromechanism. Jixie Qiangdu 2005, 27, 358–370. [Google Scholar]
- Wang, Z.; Lin, X.; Kang, N.; Chen, J.; Tan, H.; Feng, Z.; Qin, Z.; Yang, H.; Huang, W. Laser powder bed fusion of high-strength Sc/Zr-modified Al–Mg alloy: Phase selection, microstructural/mechanical heterogeneity, and tensile deformation behavior. J. Mater. Sci. Technol. 2021, 95, 40–56. [Google Scholar] [CrossRef]
- Cini, A.; Irving, P.E. Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy—Part I: Experimentation and fractographic analysis. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 776–789. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhao, Z. Fractography, 1st ed.; Higher Education Press: Beijing, China, 2006; pp. 146–153. [Google Scholar]
YS (MPa) | UTS (MPa) | ELO (%) | E (GPa) | |
---|---|---|---|---|
AB-Z-RT | 321 | 404 | 21.3 | 69.9 |
AB-H-RT | 352 | 412 | 23.6 | 72.2 |
AA-Z-RT | 527 | 551 | 11.2 | 70.7 |
AA-H-RT | 535 | 560 | 11.1 | 65.5 |
AA-H-100 °C | 417 | 435 | 25.8 | 63.6 |
AA-H-150 °C | 214 | 269 | 20.1 | 62.1 |
AA-H-200 °C | 77 | 102 | 47.9 | 38.5 |
AA-H-250 °C | 52 | 54 | 72.2 | 36.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Zhang, H.; Shu, X.; Xu, H.; Chen, S.; Ding, Y.; Liang, L.; Qiu, Z.; Yang, Y.; Zheng, Y. Study on Microstructure and High-Temperature Mechanical Properties of Al-Mg-Sc-Zr Alloy Processed by LPBF. Metals 2024, 14, 890. https://doi.org/10.3390/met14080890
Ren Z, Zhang H, Shu X, Xu H, Chen S, Ding Y, Liang L, Qiu Z, Yang Y, Zheng Y. Study on Microstructure and High-Temperature Mechanical Properties of Al-Mg-Sc-Zr Alloy Processed by LPBF. Metals. 2024; 14(8):890. https://doi.org/10.3390/met14080890
Chicago/Turabian StyleRen, Zhihao, Hao Zhang, Xuedao Shu, Haijie Xu, Siyuan Chen, Yaoyao Ding, Liwen Liang, Zixiang Qiu, Yang Yang, and Yongjian Zheng. 2024. "Study on Microstructure and High-Temperature Mechanical Properties of Al-Mg-Sc-Zr Alloy Processed by LPBF" Metals 14, no. 8: 890. https://doi.org/10.3390/met14080890
APA StyleRen, Z., Zhang, H., Shu, X., Xu, H., Chen, S., Ding, Y., Liang, L., Qiu, Z., Yang, Y., & Zheng, Y. (2024). Study on Microstructure and High-Temperature Mechanical Properties of Al-Mg-Sc-Zr Alloy Processed by LPBF. Metals, 14(8), 890. https://doi.org/10.3390/met14080890