Solute Segregation and Pinning Effect on Lateral Twin Boundary in Magnesium
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
- The coherent T-PP2 interface of the lateral TBs with minor excess volume and obvious extended bonds should be less stiff than the region far from the interface. Therefore, alloying elements with a significant difference in atomic radius with regard to Mg possess more negative segregation energy.
- Combined with the data of formation energy, DFT calculations enable the selection of alloying elements with a good solubility and pinning effect on a coherent T-PP2 interface. Ge, Ga, Y, Gd, Pm, La and Ca can form stable segregation on the T-PP2; meanwhile, they also have a strong pinning effect on the interface.
- Along the semi-coherent T-PP2 interface, solute atoms segregated in coherent regions are more effective at pinning TB migration than those segregated in misfit regions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koike, J.; Kobayashi, T.; Mukai, T.; Watanabe, H.; Suzuki, M.; Maruyama, K.; Higashi, K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 2003, 51, 2055–2065. [Google Scholar] [CrossRef]
- Arul Kumar, M.; Beyerlein, I.J.; Lebensohn, R.A.; Tomé, C.N. Role of alloying elements on twin growth and twin transmission in magnesium alloys. Mater. Sci. Eng. A 2017, 706, 295–303. [Google Scholar] [CrossRef]
- Bian, M.Z.; Huang, X.; Chino, Y. Substantial improvement in cold formability of concentrated Mg–Al–Zn–Ca alloy sheets by high temperature final rolling. Acta Mater. 2021, 220, 117328. [Google Scholar] [CrossRef]
- Ghazisaeidi, M.; Hector, L.G.; Curtin, W.A. Solute strengthening of twinning dislocations in Mg alloys. Acta Mater. 2014, 80, 278–287. [Google Scholar] [CrossRef]
- Maghsoudi, M.; Ovri, H.; Krekeler, T.; Ziehmer, M.; Lilleodden, E.T. Effect of Gd solutes on the micromechanical response of twinning and detwinning in Mg. Acta Mater. 2023, 258, 119202. [Google Scholar] [CrossRef]
- Song, E.; Andani, M.T.; Misra, A. Investigation of grain size and geometrically necessary dislocation density dependence of flow stress in Mg-4Al by using nanoindentation. Acta Mater. 2024, 265, 119633. [Google Scholar] [CrossRef]
- Buha, J. Grain refinement and improved age hardening of Mg–Zn alloy by a trace amount of V. Acta Mater. 2008, 56, 3533–3542. [Google Scholar] [CrossRef]
- Wen, Y.; Guan, B.; Xin, Y.; Liu, C.; Wu, P.; Huang, G.; Liu, Q. Solute atom mediated Hall-Petch relations for magnesium binary alloys. Scr. Mater. 2022, 210, 114451. [Google Scholar] [CrossRef]
- Wu, J.; Jin, L.; Dong, J.; Wang, F.; Dong, S. The texture and its optimization in magnesium alloy. J. Mater. Sci. Technol. 2020, 42, 175–189. [Google Scholar] [CrossRef]
- Pei, R.; Zou, Y.; Zubair, M.; Wei, D.; Al-Samman, T. Synergistic effect of Y and Ca addition on the texture modification in AZ31B magnesium alloy. Acta Mater. 2022, 233, 117990. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, N.; Alizadeh, R.; Monclús, M.A.; Cui, Y.W.; Molina-Aldareguía, J.M.; Llorca, J. Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys. Acta Mater. 2019, 170, 155–165. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H. Effects of solute segregation on the mobility and mechanical properties of {102} coherent twin boundary in magnesium. Comput. Mater. Sci. 2023, 227, 112297. [Google Scholar]
- Jiang, X.; Xi, C.; Liu, X.; Wang, L.; Kang, Y.; Huo, Q. Accelerating and decelerating effects of Gd content and peak-aging treatment on the grain growth of magnesium. Mater. Today Commun. 2023, 37, 107581. [Google Scholar] [CrossRef]
- Nie, J.F.; Zhu, Y.M.; Liu, J.Z.; Fang, X.Y. Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science 2013, 340, 957–960. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, P.Z.; Gong, M.Y.; McCabe, R.J.; Wang, J.; Tomé, C.N. Three-dimensional character of the deformation twin in magnesium. Nat. Commun. 2019, 10, 3308. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Xu, S.W.; Nie, J.F. {101} Twin boundary structures in a Mg–Gd alloy. Acta Mater. 2018, 143, 1–12. [Google Scholar]
- Wang, X.; Hu, Y.; Yu, K.; Mahajan, S.; Beyerlein, I.J.; Lavernia, E.J.; Rupert, T.J.; Schoenung, J.M. Room Temperature Deformation-induced Solute Segregation and its Impact on Twin Boundary Mobility in a Mg-Y Alloy. Scr. Mater. 2022, 209, 114375. [Google Scholar] [CrossRef]
- Tsuru, T.; Somekawa, H.; Chrzan, D.C. Interfacial segregation and fracture in Mg-based binary alloys: Experimental and first-principles perspective. Acta Mater. 2018, 151, 78–86. [Google Scholar] [CrossRef]
- He, C.; Li, Z.; Chen, H.; Wilson, N.; Nie, J.F. Unusual solute segregation phenomenon in coherent twin boundaries. Nat. Commun. 2021, 12, 722. [Google Scholar] [CrossRef]
- Wang, J.; Beyerlein, I.J. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals. Model. Simul. Mater. Sci. Eng. 2012, 20, 024002. [Google Scholar] [CrossRef]
- Kumar, A.; Wang, J.; Tomé, C.N. First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals. Acta Mater. 2015, 85, 144–154. [Google Scholar] [CrossRef]
- Nagarajan, D. Quantitative measurements of strain-induced twinning in Mg, Mg-Al and Mg-Zn solid solutions. Mater. Sci. Eng. A 2022, 860, 144292. [Google Scholar] [CrossRef]
- Huang, Z.; Nie, J.F. Interaction between hydrogen and solute atoms in {102} twin boundary and its impact on boundary cohesion in magnesium. Acta Mater. 2021, 214, 117009. [Google Scholar]
- Gong, M.Y.; Graham, J.; Taupin, V.; Capolungo, L. The effects of stress, temperature and facet structure on growth of {102} twins in Mg: A molecular dynamics and phase field study. Acta Mater. 2021, 208, 116603. [Google Scholar]
- Liu, Y.; Li, N.; Shao, S.; Gong, M.Y.; Wang, J.; McCabe, R.J.; Jiang, Y.; Tomé, C.N. Characterizing the boundary lateral to the shear direction of deformation twins in magnesium. Nat. Commun. 2016, 7, 11577. [Google Scholar] [CrossRef] [PubMed]
- Hirth, J.P.; Wang, J.; Tomé, C.N. Disconnections and other defects associated with twin interfaces. Prog. Mater. Sci. 2016, 83, 417–471. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Yue, W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B 1986, 33, 8800–8802. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kim, K.H.; Jeon, J.B.; Lee, B.J. Modified embedded-atom method interatomic potentials for Mg–X (X = Y, Sn, Ca) binary systems. Calphad 2015, 48, 27–34. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Morse, P.M. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Phys. Rev. 1929, 34, 57–64. [Google Scholar] [CrossRef]
- Zhao, W.; Cheng, J.L.; Feng, S.D.; Li, G.; Liu, R.P. Intrinsic correlation between elastic modulus and atomic bond stiffness in metallic glasses. Mater. Lett. 2016, 175, 227–230. [Google Scholar] [CrossRef]
- Zhao, W.; Li, G.; Wang, Y.Y.; Feng, S.D.; Qi, L.; Ma, M.Z.; Liu, R.P. Atomic bond proportions and relations to physical properties in metallic glasses. Mater. Des. 2015, 65, 1048–1052. [Google Scholar] [CrossRef]
- Chen, X.; Venezuela, J.; Dargusch, M. The high corrosion-resistance of ultra-high purity Mg–Ge alloy and its discharge performance as anode for Mg–air battery. Electrochim. Acta 2023, 448, 142127. [Google Scholar] [CrossRef]
- Dai, Y.; Xiao, M.; Hu, Y.; Yang, Y.; Jiang, B.; Zheng, T.; Dong, L.; Yang, B.; Zheng, C. Effect of extrusion parameters on microstructure and mechanical properties of Mg-0.12Ca-0.08Ba alloy. J. Mater. Res. Technol. 2022, 20, 1570–1579. [Google Scholar] [CrossRef]
- Drozdenko, D.; Dobroň, P.; Yi, S.; Horváth, K.; Letzig, D.; Bohlen, J. Mobility of pinned twin boundaries during mechanical loading of extruded binary Mg-1Zn alloy. Mater. Charact. 2018, 139, 81–88. [Google Scholar] [CrossRef]
- Franke, P.; Neuschütz, D. Mg-Yb (Magnesium-Ytterbium). In Binary Systems. Part 5: Binary Systems Supplement 1: Phase Diagrams, Phase Transition Data, Integral and Partial Quantities of Alloys; Franke, P., Neuschütz, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–3. [Google Scholar]
- Ge, B.; Yang, M.; Zu, Q.; Guo, J.; Tian, Y.; Peng, Q. Lithium Cluster Segregation in Coherent Contraction Twin Boundaries of Magnesium Alloy. Acta Mater. 2020, 201, 477–487. [Google Scholar] [CrossRef]
- Hanna, A.; Azzeddine, H.; Huang, Y.; Bradai, D.; Cabrera, J.M.; Langdon, T.G. An investigation of the thermal stability of an MgDy alloy after processing by high-pressure torsion. Mater. Charact. 2019, 151, 519–529. [Google Scholar] [CrossRef]
- Hui, W.; Sun, L.; Zhou, Y.; Gao, Y.; Zhai, W.; Dong, H.; Liu, Y.; Gao, Q.; Peng, J. Effect of Mg–Ga alloy intermetallic compounds on the properties of soluble aluminum alloy. Intermetallics 2022, 144, 107501. [Google Scholar] [CrossRef]
- Li, S.; Jin, Z.; Gong, X.; Huang, H.; Guan, S.; Yuan, G. Chemical ordering effects on martensitic transformations in Mg-Sc alloys. Acta Mater. 2023, 249, 118854. [Google Scholar] [CrossRef]
- Ma, B.; Tan, C.; Ouyang, L.; Shao, H.; Wang, N.; Zhu, M. Microstructure and discharge performance of Mg-La alloys as the anodes for primary magnesium-air batteries. J. Alloys Compd. 2022, 918, 165803. [Google Scholar] [CrossRef]
- Ma, X.; Jiao, Q.; Kecskes, L.J.; El-Awady, J.A.; Weihs, T.P. Effect of basal precipitates on extension twinning and pyramidal slip: A micro-mechanical and electron microscopy study of a Mg–Al binary alloy. Acta Mater. 2020, 189, 35–46. [Google Scholar] [CrossRef]
- Mishra, R.K.; Brahme, A.; Sabat, R.K.; Jin, L.; Inal, K. Twinning and texture randomization in Mg and Mg-Ce alloys. Int. J. Plast. 2019, 117, 157–172. [Google Scholar] [CrossRef]
- Molodov, K.D.; Al-Samman, T.; Molodov, D.A. Effect of gadolinium on the deformation and recrystallization behavior of magnesium crystals. Acta Mater. 2022, 240, 118312. [Google Scholar] [CrossRef]
- Pan, H.; Yang, C.; Yang, Y.; Dai, Y.; Zhou, D.; Chai, L.; Huang, Q.; Yang, Q.; Liu, S.; Ren, Y.; et al. Ultra-fine grain size and exceptionally high strength in dilute Mg–Ca alloys achieved by conventional one-step extrusion. Mater. Lett. 2019, 237, 65–68. [Google Scholar] [CrossRef]
- Gao, S.; Ren, S.; Liu, C.; Wu, Z.; Li, H. Effect of Cd Addition on Microstructure and Properties of Mg-Cd Binary Magnesium Alloy. Rare Met. Mater. Eng. 2015, 44, 2401–2404. [Google Scholar]
- Tan, X.F.; Kim, M.; Gu, Q.; Piraquive Pinzon, J.; Zeng, G.; McDonald, S.D.; Nogita, K. Na-modified cast hypo-eutectic Mg–Mg2Si alloys for solid-state hydrogen storage. J. Power Sources 2022, 538, 231538. [Google Scholar] [CrossRef]
- Tong, X.; Wu, G.; Easton, M.A.; Sun, M.; StJohn, D.H.; Jiang, R.; Qi, F. Exceptional grain refinement of Mg-Zr master alloy treated by tungsten inert gas arc re-melting with ultra-high frequency pulses. Scr. Mater. 2022, 215, 114700. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Nagaumi, H.; Yang, X. Study on the mechanism of dilute Mn addition in enhancing the creep resistance of hot-rolled Mg-1.5Y alloy sheet. Mat. Sci. Eng. A-Struct. 2023, 873, 145026. [Google Scholar] [CrossRef]
- Shi, Q.; Allison, J. An Experimental Study on Twinning Behavior in Mg Alloys with Different Solute Elements. In Magnesium Technology; Leonard, A., Barela, S., Neelameggham, N.R., Miller, V.M., Tolnai, D., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 69–71. [Google Scholar]
- Yang, W.; Tekumalla, S.; Gupta, M. Cumulative Effect of Strength Enhancer—Lanthanum and Ductility Enhancer—Cerium on Mechanical Response of Magnesium. Metals 2017, 7, 241. [Google Scholar] [CrossRef]
- Nagarajan, D.; Cáceres, C.H. The Friction Stress of the Hall–Petch Relationship of Pure Mg and Solid Solutions of Al, Zn, and Gd. Metall. Mater. Trans. A 2018, 49, 5288–5297. [Google Scholar] [CrossRef]
- Galido-Nava, E.I. Modelling twinning evolution during plastic deformation in hexagonal close-packed metals. Mater. Des. 2015, 83, 327–343. [Google Scholar] [CrossRef]
- Kristián, M.; Andrea, F.; Michal, K.; Andriy, O.; Gergely, F.; Gergely, N.; Petr, H.; Daria, D. The influence of gadolinium concentration on the twin propagation rate in magnesium alloys. J. Alloys Compd. 2023, 948, 169635. [Google Scholar]
- Gong, M.Y.; Hirth, J.P.; Liu, Y.; Shen, Y.; Wang, J. Interface structures and twinning mechanisms of twins in hexagonal metals. Mater. Res. Lett. 2017, 5, 449–464. [Google Scholar] [CrossRef]
- Peach, M.; Koehler, J.S. The Forces Exerted on Dislocations and the Stress Fields Produced by Them. Phys. Rev. 1950, 80, 436–439. [Google Scholar] [CrossRef]
Element | Valency | K-Mesh | Structure | Lattice (Å) | ECoh (eV) |
---|---|---|---|---|---|
Zn | 12 | 30 × 29 × 27 | Hexagonal | a = 2.61, c = 4.87 | −1.10 |
Ge | 14 | 7 × 12 × 23 | Cubic | a = 5.67 | −4.51 |
Ga | 13 | 9 × 9 × 29 | Orthorhombic | a = 4.43, b = 7.60, c = 4.56 | −2.89 |
Al | 3 | 7 × 12 × 23 | Cubic | a = 4.04 | −3.75 |
Cd | 12 | 27 × 25 × 22 | Hexagonal | a = 2.96, c = 5.89 | −0.74 |
Li | 3 | 9 × 15 × 30 | Cubic | a = 4.33 | −1.91 |
Mg | 2 | 25 × 24 × 26 | Hexagonal | a = 3.17, c = 5.14 | −1.51 |
Zr | 12 | 24 × 23 × 25 | Hexagonal | a = 3.24, c = 5.17 | −8.52 |
Sc | 11 | 9 × 14 × 28 | Cubic | a = 4.65 | −6.20 |
Na | 7 | 10 × 16 × 31 | Cubic | a = 4.21 | −1.31 |
Dy | 9 | 22 × 21 × 24 | Hexagonal | a = 3.64, c = 5.58 | −4.53 |
Y | 11 | 8 × 13 × 26 | Cubic | a = 5.10 | −6.40 |
Yb | 8 | 10 × 15 × 31 | Cubic | a = 4.24 | −1.46 |
Gd | 9 | 22 × 21 × 22 | Hexagonal | a = 3.64, c = 5.59 | −4.57 |
Pm | 11 | 22 × 21 × 11 | Hexagonal | a = 3.68, c = 11.80 | −4.68 |
Ca | 10 | 7 × 12 × 24 | Cubic | a = 5.58 | −1.93 |
K | 9 | 8 × 12 × 24 | Cubic | a = 5.40 | −1.04 |
Ce | 12 | 9 × 14 × 28 | Cubic | a = 4.67 | −5.92 |
La | 11 | 21 × 20 × 11 | Hexagonal | a = 3.80, c = 12.04 | −4.88 |
Ba | 10 | 9 × 8 × 18 | Hexagonal | a = 4.63, b = 8.02, c = 7.29 | −1.88 |
Solute | (eV) | (eV) |
---|---|---|
Zn | −0.055 | −0.082 |
Ge | −0.047 | −0.230 |
Ga | −0.045 | −0.281 |
Al | −0.013 | 0.095 |
Cd | −0.008 | −0.290 |
Li | −0.031 | −0.177 |
Mg | - | - |
Zr | 0.034 | 0.611 |
Sc | −0.014 | −0.044 |
Na | −0.043 | 0.302 |
Dy | −0.039 | −0.129 |
Y | −0.048 | −0.224 |
Yb | −0.064 | −0.032 |
Gd | −0.043 | −0.197 |
Pm | −0.061 | −0.259 |
Ca | −0.074 | −0.127 |
K | −0.129 | 1.106 |
Ce | 0.049 | 0.832 |
La | −0.087 | −0.281 |
Ba | −0.212 | 0.256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, Q.; Sun, H.; Gong, M.; Wang, J.; Liu, Y. Solute Segregation and Pinning Effect on Lateral Twin Boundary in Magnesium. Metals 2024, 14, 942. https://doi.org/10.3390/met14080942
Zhang H, Zhang Q, Sun H, Gong M, Wang J, Liu Y. Solute Segregation and Pinning Effect on Lateral Twin Boundary in Magnesium. Metals. 2024; 14(8):942. https://doi.org/10.3390/met14080942
Chicago/Turabian StyleZhang, Haoyan, Qi Zhang, Haowen Sun, Mingyu Gong, Jian Wang, and Yue Liu. 2024. "Solute Segregation and Pinning Effect on Lateral Twin Boundary in Magnesium" Metals 14, no. 8: 942. https://doi.org/10.3390/met14080942
APA StyleZhang, H., Zhang, Q., Sun, H., Gong, M., Wang, J., & Liu, Y. (2024). Solute Segregation and Pinning Effect on Lateral Twin Boundary in Magnesium. Metals, 14(8), 942. https://doi.org/10.3390/met14080942