Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Al0.75CoCr1.25FeNi High-Entropy Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure of Al0.75CoCr1.25FeNi HEA
3.2. Effect of Heat Treatment on Corrossion Resistance of Al0.75CoCr1.25FeNi HEA
3.3. Corrosion Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.F.; Yan, H.L.; Fang, F.; Jia, N. Molecular dynamic simulations of deformation mechanisms for FeMnCoCrNi high-entropy alloy bicrystal micropillars. Acta Metall. Sin. 2023, 59, 1051–1064. [Google Scholar]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Liaw, P.K.; Li, R.X.; Zhang, W.R.; Geng, G.H.; Yan, X.H.; Liu, G.Q.; Zhang, Y. Relationship between the unique microstructures and behaviors of high-entropy alloys. Int. J. Miner. Metall. Mater. 2024, 31, 1350–1363. [Google Scholar] [CrossRef]
- Yang, X.; Chen, D.Z.; Feng, L.; Qin, G.; Wu, S.P.; Chen, R.R. Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition. Int. J. Miner. Metall. Mater. 2024, 31, 1364–1372. [Google Scholar] [CrossRef]
- Macdonald, B.E.; Fu, Z.; Zheng, B.; Chen, W.; Lin, Y.; Chen, F.; Zhang, L.; Ivanisenko, J.; Zhou, Y.; Hahn, H.; et al. Recent progress in high entropy alloy research. JOM 2017, 69, 2024–2031. [Google Scholar] [CrossRef]
- Xiao, N.; Guan, X.; Wang, D.; Yan, H.L.; Cai, M.H.; Jia, N.; Zhang, Y.D.; Esling, C.; Zhao, X.; Zuo, L. Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review. Int. J. Miner. Metall. Mater. 2023, 30, 1667–1679. [Google Scholar] [CrossRef]
- Miracle, D.B.; Miller, J.D.; Senkov, O.N.; Woodward, C.; Uchic, M.D.; Tiley, J. Exploration and development of high entropy alloys for structural applications. Entropy 2014, 16, 494–525. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y. Functional properties and promising applications of high entropy alloys. Scr. Mater. 2020, 187, 188–193. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Deshmukh, A.A.; Ranganathan, R. Recent advances in modelling structure-property correlations in high-entropy alloys. J. Mater. Sci. Technol. 2024, 204, 127–151. [Google Scholar] [CrossRef]
- Izadi, M.; Soltanieh, M.; Alamolhoda, S.; Aghamiri, S.M.S.; Mehdizade, M. Microstructural characterization and corrosion behavior of AlxCoCrFeNi high entropy alloys. Mater. Chem. Phys. 2021, 273, 124937. [Google Scholar] [CrossRef]
- Qin, G.; Xue, W.; Fan, C.; Chen, R.; Wang, L.; Su, Y.; Ding, H.; Guo, J. Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi)100-xCox high-entropy alloys. Mater. Sci. Eng. A 2018, 710, 200–205. [Google Scholar] [CrossRef]
- Feng, L.; Wang, G.P.; Ma, K.; Yang, W.J.; An, G.S.; Li, W.S. Microstructure and properties of AlCoxCrFeNiCu high-entropy alloy coating synthesized by cold spraying assisted induction remelting. Acta Metall. Sin. 2023, 59, 703–712. [Google Scholar]
- Dong, Y.; Yao, Z.; Huang, X.; Du, F.; Li, C.; Chen, A.; Wu, F.; Cheng, Y.; Zhang, Z. Microstructure and mechanical properties of AlCoxCrFeNi3-x eutectic high-entropy-alloy system. J. Alloys Compd. 2020, 823, 153886. [Google Scholar] [CrossRef]
- Hu, W.B.; Zhang, X.W.; Song, L.F.; Liao, B.K.; Wan, S.; Kang, L.; Guo, X.P. Corrosion Bbehavior of AlCoCrFeNi2.1 eutectic high-entropy alloy in sulfuric acid solution. Acta Metall. Sin. 2023, 59, 1644–1654. [Google Scholar]
- Fu, Y.; Li, J.; Luo, H.; Du, C.; Li, X. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. J. Mater. Sci. Technol. 2021, 80, 217–233. [Google Scholar] [CrossRef]
- Liu, J.; Lv, Z.; Wu, Z.; Zhang, J.; Zheng, C.; Chen, C.; Ju, D.; Che, L. Research progress on the influence of alloying elements on the corrosion resistance of high-entropy alloys. J. Alloys Compd. 2024, 1002, 175394. [Google Scholar] [CrossRef]
- Lee, C.P.; Chang, C.C.; Chen, Y.Y.; Yeh, J.W.; Shih, H.C. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on. the corrosion behaviour in aqueous environments. Corros. Sci. 2008, 50, 2053–2060. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B.; Xie, X.; Brechtl, J.; Dahmen, K.A.; Liaw, P.K. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 2017, 119, 33–45. [Google Scholar] [CrossRef]
- Chai, W.; Lu, T.; Pan, Y. Corrosion behaviors of FeCoNiCrx (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation. Intermetallics 2020, 116, 106654. [Google Scholar] [CrossRef]
- Tsau, C.H.; Lin, S.X.; Fang, C.H. Microstructures and corrosion behaviors of FeCoNi and CrFeCoNi equimolar alloys. Mater. Chem. Phys. 2017, 186, 534–540. [Google Scholar] [CrossRef]
- Qiu, X.W.; Wu, M.J.; Liu, C.G.; Zhang, Y.P.; Huang, C.X. Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids. J. Alloys Compd. 2017, 708, 353–357. [Google Scholar] [CrossRef]
- Zhao, R.F.; Ren, B.; Cai, B.; Liu, Z.X.; Zhang, G.P.; Zhang, J.J. Corrosion behavior of CoxCrCuFeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution. Results Phys. 2019, 15, 102667. [Google Scholar] [CrossRef]
- Jiang, D.; Cui, H.; Chen, H.; Zhao, X.; Ma, G.; Song, X. Wear and corrosion properties of B4C-added CoCrNiMo high-entropy alloy coatings with in-situ coherent ceramic. Mater. Des. 2021, 210, 110068. [Google Scholar] [CrossRef]
- Munitz, A.; Salhov, S.; Hayun, S.; Frage, N. Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Alloys Compd. 2016, 683, 221–230. [Google Scholar] [CrossRef]
- Liang, J.T.; Cheng, K.C.; Chen, S.-H. Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders. J. Alloys Compd. 2019, 803, 484–490. [Google Scholar] [CrossRef]
- Nie, S.J.; Yi, X.N.; Zhou, H.L.; Zhu, H.J.; Yang, L.L.; Fu, F.L.; Li, J.Y.; Yang, H.K.; Xu, G.X.; Lu, S.; et al. Corrosion behavior of as-cast Al0.75CoFeCr1.25Ni high entropy alloy in 0.5 mol/L NaOH solution. J. Iron Steel Res. Int. 2024. [Google Scholar] [CrossRef]
- Wang, W.R.; Wang, W.L.; Yeh, J.W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 2014, 589, 143–152. [Google Scholar] [CrossRef]
- Chen, L.; Bobzin, K.; Zhou, Z.; Zhao, L.; Oete, M.; Koenigstein, T.; Tan, Z.; He, D. Effect of heat treatment on the phase composition, microstructure and mechanical properties of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high-entropy alloys. Metals 2018, 8, 974. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Tsai, M.H.; Yeh, J.W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Yamanaka, K.; Shiratori, H.; Mori, M.; Omura, K.; Fujieda, T.; Kuwabara, K.; Chiba, A. Corrosion mechanism of an equimolar AlCoCrFeNi high-entropy alloy additively manufactured by electron beam melting. Npj Mat. Degrad. 2020, 4, 24. [Google Scholar] [CrossRef]
- Ma, J.; Wen, J.; Li, Q.; Zhang, Q. Electrochemical polarization and corrosion behavior of Al-Zn-In based alloy in acidity and alkalinity solutions. Int. J. Hydrogen Energy 2013, 38, 14896–14902. [Google Scholar] [CrossRef]
- Liu, Y.C.; Zheng, Z.B.; Xu, L.L.; Xu, Z.B.; Yin, F.X.; Zheng, K.H. Unraveling the interfacial structure of TA2 titanium-A36 steel composite plate and its corrosion behavior in marine environment. Corros. Sci. 2024, 230, 111923. [Google Scholar] [CrossRef]
- Cui, X.; Zhu, G.; Pan, Y.; Shao, Q.; Zhao, C.; Dong, M.; Zhang, Y.; Guo, Z. Polydimethylsiloxane-titania nanocomposite coating: Fabrication and corrosion resistance. Polymer 2018, 138, 203–210. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Golozar, M.A.; Saatchi, A.; Raeissi, K. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels. Corros. Sci. 2010, 52, 205–209. [Google Scholar] [CrossRef]
- Fernandez-Domene, R.M.; Blasco-Tamarit, E.; Garcia-Garcia, D.M.; Garcia-Anton, J. Effect of alloying elements on the electronic properties of thin passive films formed on carbon steel, ferritic and austenitic stainless steels in a highly concentrated LiBr solution. Thin Solid Films 2014, 558, 252–258. [Google Scholar] [CrossRef]
- Hakiki, N.E. Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel. Corros. Sci. 2011, 53, 2688–2699. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, C.; Liu, L. Wear behavior and corrosion properties of Fe-based thin film metallic glasses. J. Alloys Compd. 2015, 650, 127–135. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Qin, Y.; Zhou, H.L.; Yang, L.L.; Wang, X.J.; Wang, Z.B.; Liu, Z.G.; Zou, J.S. Effect of electrochemical hydrogen charging on corrosion behavior of Ti-6Al-4V alloy in artificial seawater. Chin. J. Mech. Eng. 2024, 37, 2. [Google Scholar] [CrossRef]
- Yang, Z.; Li, L.; Qiao, Y.X.; Li, C.T.; Zhang, L.M.; Cui, J.; Ren, D.C.; Ji, H.B.; Zheng, Y.G. Cavitation erosion-corrosion properties of as-cast TC4 and LPBF TC4 in 0.6 mol/L NaCl solution: A comparison investigation. Ultrason. Sonochem. 2024, 108, 106947. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.B.; Hu, H.X.; Zheng, Y.G. Synergistic effects of fluoride and chloride on general corrosion behavior of AISI 316 stainless steel and pure titanium in H2SO4 solutions. Corros. Sci. 2018, 130, 203–217. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, J.H.; Fu, C.W. Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques. Trans. Nonferrous Met. Soc. China 2014, 24, 3907–3916. [Google Scholar] [CrossRef]
HEAs | As-Cast | 600 °C HT | 800 °C HT | 1000 °C HT |
---|---|---|---|---|
Ecorr/mV vs. SCE | −217.6 | −274.2 | −230.7 | −251.2 |
icorr/A∙cm−2 | 1.12 × 10−8 | 7.81 × 10−9 | 8.96 × 10−9 | 9.41 × 10−9 |
V/mm∙a−1 | 1.13 × 10−10 | 7.87 × 10−11 | 9.02 × 10−11 | 9.48 × 10−11 |
Epit/mV vs. SCE | 186.7 | 35.3 | 181.2 | 160.8 |
Epass/mV vs. SCE | −135.2 | −192.4 | −150.2 | −170.6 |
HEAs | As-Cast | 600 °C HT | 800 °C HT | 1000 °C HT |
---|---|---|---|---|
Rs/Ω·cm2 | 7.16 | 10.76 | 12.57 | 15.96 |
Rp/Ω·cm2 | 2.39 × 105 | 2.48 × 105 | 5.98 × 105 | 7.30 × 105 |
Qp/Ω−1·cm−2∙s−n | 2.76 × 10−5 | 1.59 × 10−5 | 1.06 × 10−5 | 1.83 × 10−4 |
n | 0.93 | 0.90 | 0.92 | 0.88 |
HEAs | As-Cast | 600 °C HT | 800 °C HT | 1000 °C HT |
---|---|---|---|---|
ND | 1.46 × 1020 | 1.52 × 1020 | 1.29 × 1020 | 9.93 × 1019 |
NA | 1.36 × 1020 | 1.46 × 1020 | 1.03 × 1020 | 8.65 × 1019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Zhang, H.; Yuan, H.; Zhuo, X.; Cai, X.; Qiao, Y. Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Al0.75CoCr1.25FeNi High-Entropy Alloys. Metals 2024, 14, 1010. https://doi.org/10.3390/met14091010
Han J, Zhang H, Yuan H, Zhuo X, Cai X, Qiao Y. Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Al0.75CoCr1.25FeNi High-Entropy Alloys. Metals. 2024; 14(9):1010. https://doi.org/10.3390/met14091010
Chicago/Turabian StyleHan, Jianyang, Huan Zhang, Hongtao Yuan, Xiaoru Zhuo, Xiang Cai, and Yanxin Qiao. 2024. "Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Al0.75CoCr1.25FeNi High-Entropy Alloys" Metals 14, no. 9: 1010. https://doi.org/10.3390/met14091010
APA StyleHan, J., Zhang, H., Yuan, H., Zhuo, X., Cai, X., & Qiao, Y. (2024). Effect of Heat Treatment on the Microstructure and Corrosion Resistance of Al0.75CoCr1.25FeNi High-Entropy Alloys. Metals, 14(9), 1010. https://doi.org/10.3390/met14091010