Enhancing Manufacturing Processing Stability and Efficiency with Linear-Regression Analysis: Modeling on a Flow-Drill Screw (FDS) Joining Process
Abstract
:1. Introduction
1.1. Mechanical Joining Process
1.2. Linear Regression Analysis
1.3. Challenge and Research Question
- How do variables affect the machine passage time (parameter estimation) (RQ1)?
- Can the model help predict the passage time based on the given conditions, and how good is the result (prediction and evaluation) (RQ2)?
2. Materials and Methods
2.1. Materials and Experimental Procedures
2.2. Modeling on Joining Processing
- (1)
- Collecting data from the experiment. A total of 648 data points were collected.
- (2)
- Splitting the data into an 80% training set for modeling building (518 data) and a 20% test set for model prediction and evaluation (130 data).
- (3)
- Employing a multiple linear-regression model from RStudio; the model is fitted with all the training set data.
- (4)
- Checking the required assumptions for multiple linear-regression models to ensure the model is validated. Adjustments were made as needed [21].
- (5)
- Performing parameter estimation, variation analysis, prediction, and evaluations.
3. Results
3.1. Descriptive Statistics
3.2. Linear Regression Model-Effect Parameter Estimation
3.3. Variation Analysis
3.4. Prediction and Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Meng, D.; Zhang, J.; Han, Q. The Effect of Heat Treatment on Die Casting Aluminum to Apply Self-Pierce Riveting. Int. J. Adv. Manuf. Technol. 2020, 109, 2409–2419. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, J.; Chu, Y.-L.; Cheng, P.; Meng, D. Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method. In SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Zhao, Y.-G.; Huang, Z.-C.; Jiang, Y.-Q. Effect of Low-Velocity Impact on Mechanical Property and Fatigue Life of DP590/AA6061 Self-Piercing Riveted Joints. Mater. Res. Express 2022, 9, 026514. [Google Scholar] [CrossRef]
- Abe, Y.; Mori, K.-I. Mechanical Clinching and Self-Pierce Riveting for Sheet Combination of 780-MPa High-Strength Steel and Aluminium Alloy A5052 Sheets and Durability on Salt Spray Test of Joints. Int. J. Adv. Manuf. Technol. 2021, 113, 59–72. [Google Scholar] [CrossRef]
- Sathishkumar, G.B.; Sethuraman, P.; Chanakyan, C.; Sundaraselvan, S.; Joseph Arockiam, A.; Alagarsamy, S.V.; Elmariung, A.; Meignanamoorthy, M.; Ravichandran, M.; Jayasathyakawin, S. Friction Welding of Similar and Dissimilar Materials: A Review. Mater. Today 2023, 81, 208–211. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Lou, M.; Zhao, H.; Li, Y. Flow Drill Screw (FDS) Technique: A State-of-the-Art Review. J. Manuf. Process. 2023, 103, 23–52. [Google Scholar] [CrossRef]
- Ivanjko, M.; Meschut, G. Innovative Joining Technology for Multi-Material Applications with High Manganese Steels in Lightweight Car Body Structures. Weld. World 2019, 63, 97–106. [Google Scholar] [CrossRef]
- Van de Velde, A.; Maeyens, J.; Ivens, J.; Coppieters, S. The Effect of the Setting Force on the Static Strength of a Blind Rivet Nut Set in CFRP. Compos. Struct. 2023, 307, 116640. [Google Scholar] [CrossRef]
- Naito, J.; Suzuki, R. Multi-Material Automotive Bodies and Dissimilar Joining Technology to Realize Multi-Material. Kobelco Technol. Rev. 2020, 38, 32–37. [Google Scholar]
- Turing, A.; Braithwaite, R. Can Automatic Calculating Machines Be Said to Think? (1952). In The Essential Turing; Oxford University Press: Oxford, UK, 2004; pp. 487–506. [Google Scholar]
- Mitchell, T. Machine Learning; McGraw-Hill Professional: New York, NY, USA, 1997. [Google Scholar]
- Shinde, P.P.; Shah, S. A Review of Machine Learning and Deep Learning Applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef]
- Konstantina, T.P.; Exarchos, K.P.; Exarchos, M.V.; Karamouzis, D.I. Machine Learning Applications in Cancer Prognosis and Prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar]
- Brunton, S.L.; Nathan Kutz, J.; Manohar, K.; Aravkin, A.Y.; Morgansen, K.; Klemisch, J.; Goebel, N.; Buttrick, J.; Poskin, J.; Blom-Schieber, A.W.; et al. Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning. AIAA J. 2021, 59, 2820–2847. [Google Scholar] [CrossRef]
- Zhang, C.; Ammar, D.; Wang, Z.; Guo, H.; Zhu, M.; Bao, S. Learning from Moped Crash Data: Identifying Risk Factors Contributing to the Severity of Injuries Sustained by Moped Riders. Transp. Res. Rec. 2024. [Google Scholar] [CrossRef]
- Chinchanikar, S.; Shaikh, A.A. A Review on Machine Learning, Big Data Analytics, and Design for Additive Manufacturing for Aerospace Applications. J. Mater. Eng. Perform. 2022, 31, 6112–6130. [Google Scholar] [CrossRef]
- Won-Bae, K.-S.; Bang, S.-B. Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints during Annealing. J. Alloys Compd. 2005, 390, 212–219. [Google Scholar]
- Rajakumar, S.; Balasubramanian, V. Establishing Relationships between Mechanical Properties of Aluminium Alloys and Optimised Friction Stir Welding Process Parameters. Mater. Eng. 2012, 40, 17–35. [Google Scholar] [CrossRef]
- Rajakumar, S.; Muralidharan, C.; Balasubramanian, V. Statistical Analysis to Predict Grain Size and Hardness of the Weld Nugget of Friction-Stir-Welded AA6061-T 6 Aluminium Alloy Joints. Int. J. Adv. Manuf. Technol. 2011, 57, 151–165. [Google Scholar] [CrossRef]
- Barbur, V.A.; Montgomery, D.C.; Peck, E.A. Introduction to Linear Regression Analysis. Statistician 1994, 43, 339. [Google Scholar] [CrossRef]
- Groß, J. The Linear Regression Model. In Linear Regression; Springer: Berlin/Heidelberg, Germany, 2003; pp. 33–86. [Google Scholar]
- Crawford, J. Objectives of Multiple Regression. 2017. Available online: https://slideplayer.com/slide/6149686/ (accessed on 6 September 2024).
- Lachenbruch, P.A.; Cohen, J. Statistical Power Analysis for the Behavioral Sciences (2nd Ed.). J. Am. Stat. Assoc. 1989, 84, 1096. [Google Scholar] [CrossRef]
- Luger, T.; Bär, M.; Seibt, R.; Rieger, M.A.; Steinhilber, B. Using a Back Exoskeleton during Industrial and Functional Tasks-Effects on Muscle Activity, Posture, Performance, Usability, and Wearer Discomfort in a Laboratory Trial. Hum. Factors 2023, 65, 5–21. [Google Scholar] [CrossRef]
- Korkmaz, S.; Goksuluk, D.; Zararsiz, G. MVN: An R Package for Assessing Multivariate Normality. R. J. 2014, 6, 151. [Google Scholar] [CrossRef]
- Benoit, K. Linear Regression Models with Logarithmic Transformations. Lond. Sch. Econ. 2011, 22, 23–36. [Google Scholar]
- LeCroy, C.W.; Krysik, J. Understanding and Interpreting Effect Size Measures. Soc. Work Res. 2007, 31, 243–248. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Tranmer, M.; Murphy, J.; Elliot, M.; Pampaka, M. Multiple Linear Regression, 2nd ed.; Cathie Marsh Institute Working Paper 2020-01. Available online: https://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2020/multiple-linear-regression.pdf (accessed on 6 September 2024).
- Andrade, C. The P Value and Statistical Significance: Misunderstandings, Explanations, Challenges, and Alternatives. Indian J. Psychol. Med. 2019, 41, 210–215. [Google Scholar] [CrossRef]
Variable | UTS (MPa) | YS (MPa) | Elongation (%) | Hardness (HRB) |
---|---|---|---|---|
6061-T6 | 310 | 276 | 12 | 60 |
ASTM-A1008 | 350 | 213 | 45 | 55 |
Treatment No. | Factor (Variable) | ||
---|---|---|---|
Rotational Speed (rpm) | Down-Force (N) | Switch Point (mm) | |
1 | 6000 | 1100 | 5 |
2 | 6000 | 1100 | 6 |
3 | 6000 | 1100 | 7 |
4 | 6000 | 1200 | 5 |
5 | 6000 | 1200 | 6 |
6 | 6000 | 1200 | 7 |
7 | 6000 | 1300 | 5 |
8 | 6000 | 1300 | 6 |
9 | 6000 | 1300 | 7 |
10 | 7000 | 1100 | 5 |
11 | 7000 | 1100 | 6 |
12 | 7000 | 1100 | 7 |
13 | 7000 | 1200 | 5 |
14 | 7000 | 1200 | 6 |
15 | 7000 | 1200 | 7 |
16 | 7000 | 1300 | 5 |
17 | 7000 | 1300 | 6 |
18 | 7000 | 1300 | 7 |
19 | 8000 | 1100 | 5 |
20 | 8000 | 1100 | 6 |
21 | 8000 | 1100 | 7 |
22 | 8000 | 1200 | 5 |
23 | 8000 | 1200 | 6 |
24 | 8000 | 1200 | 7 |
25 | 8000 | 1300 | 5 |
26 | 8000 | 1300 | 6 |
27 | 8000 | 1300 | 7 |
Variable | Description | Recorded Level | Variable in Model | Variable Type |
---|---|---|---|---|
Rotational speed | The machine’s rotational speed (rpm) to penetrate the material stacks | 6000 * | Independent variable (categorical) | |
7000 | ||||
8000 | ||||
Down-force | The pre-set downforce (N) applied on the screw to form a hole in joined material | 1100 * | Independent variable (categorical) | |
1200 | ||||
1300 | ||||
Switch point | Screw movement distance (mm) for the switch to different process stages | 5 * | Independent variable (categorical) | |
6 | ||||
7 | ||||
Passage time | The hole-forming time (ms) during the process | Continuous | y | Dependent variable (Numerical) |
Variables | Coef. | Exp (Coef.) | S.E. | p-Value | 95% C.I. of Exp (Coef.) | Effect Size | ||
---|---|---|---|---|---|---|---|---|
2.5% | 97.5% | Cohen’s d | 95% C.I. | |||||
Intercept | 6.82 | 913.79 | 1.02 | <0.01 | 891.95 | 936.16 | 1.74 ‡ | [1.63, 1.85] |
Rotational_Speed 7000 | −0.25 | 0.78 | 1.02 | <0.01 | 0.76 | 0.80 | −1.10 ‡ | [−1.23, −0.97] |
Rotational_Speed 8000 | −0.42 | 0.66 | 1.02 | <0.01 | 0.64 | 0.68 | −1.87 ‡ | [−2.00, −1.73] |
Down_Force 1200 | −0.20 | 0.82 | 1.02 | <0.01 | 0.79 | 0.84 | −0.90 ‡ | [−1.04, −0.77] |
Down_Force 1300 | −0.35 | 0.71 | 1.02 | <0.01 | 0.69 | 0.73 | −1.54 ‡ | [−1.68, −1.41] |
Switch_Point6 | −0.02 | 0.98 | 1.02 | 0.09 | 0.97 | 1.00 | −0.07 | [−0.15, 0.01] |
Switch_Point7 | 0.01 | 1.01 | 1.02 | 0.52 | 0.99 | 1.02 | 0.03 | [−0.05, 0.10] |
Rotational_Speed 7000: Down_Force 1200 | 0.04 | 1.04 | 1.02 | 0.08 | 0.99 | 1.08 | 0.17 | [−0.02, 0.36] |
Rotational_Speed 8000: Down_Force 1200 | 0.05 | 1.05 | 1.02 | 0.02 | 1.01 | 1.10 | 0.23 | [0.04, 0.42] |
Rotational_Speed 7000: Down_Force 1300 | 0.01 | 1.01 | 1.02 | 0.69 | 0.97 | 1.05 | 0.04 | [−0.15, 0.23] |
Rotational_Speed 8000: Down_Force 1300 | 0.03 | 1.03 | 1.02 | 0.22 | 0.98 | 1.07 | 0.12 | [−0.07, 0.31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Guzman, M.; Zhao, X. Enhancing Manufacturing Processing Stability and Efficiency with Linear-Regression Analysis: Modeling on a Flow-Drill Screw (FDS) Joining Process. Metals 2024, 14, 1027. https://doi.org/10.3390/met14091027
Zhang C, Guzman M, Zhao X. Enhancing Manufacturing Processing Stability and Efficiency with Linear-Regression Analysis: Modeling on a Flow-Drill Screw (FDS) Joining Process. Metals. 2024; 14(9):1027. https://doi.org/10.3390/met14091027
Chicago/Turabian StyleZhang, Chengxin, Mario Guzman, and Xuzhe Zhao. 2024. "Enhancing Manufacturing Processing Stability and Efficiency with Linear-Regression Analysis: Modeling on a Flow-Drill Screw (FDS) Joining Process" Metals 14, no. 9: 1027. https://doi.org/10.3390/met14091027
APA StyleZhang, C., Guzman, M., & Zhao, X. (2024). Enhancing Manufacturing Processing Stability and Efficiency with Linear-Regression Analysis: Modeling on a Flow-Drill Screw (FDS) Joining Process. Metals, 14(9), 1027. https://doi.org/10.3390/met14091027