Review of the Use of Metals in Biomedical Applications: Biocompatibility, Additive Manufacturing Technologies, and Standards and Regulations
Abstract
:1. Introduction
2. Metals Used in Biomedical Applications
2.1. Factors That Determine Biocompatibility
2.2. Metals Used in Biomedical Implants Applications
2.2.1. Magnesium Alloys
Mechanical Properties of Mg Alloys
Biocompatibility of Mg and Mg Alloys
2.2.2. Cobalt Chromium Alloys
Mechanical Properties of Co-Cr Alloys
Biocompatibility of Co-Cr Alloys
2.2.3. Ti and Ti-Alloys
Mechanical and Physical Properties of Ti and Ti Alloys
Biocompatibility of Ti and Ti Alloys
3. Production Methods
3.1. Direct Metal Laser Sintering (DMLS)
3.2. Selective Laser Melting (SLM)
3.3. Electron Beam Melting (EBM)
3.4. Binder Jetting (BJ)
4. Standards and Regulations
4.1. FDA Technical Guidance on Additive Manufacturing
4.2. Insufficient Guidance for AM Medical Devices
4.3. Ensuring Standardization and Quality Control of AM Devices
- Materials
- Design, printing, and post-printing validation
- Printing characteristics and parameters
- Physical and Mechanical assessment of final devices
- Biological considerations of final devices (cleaning, sterility, and biocompatibility)
5. Conclusions and Future Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chua, K.; Khan, I.; Malhotra, R.; Zhu, D. Additive Manufacturing and 3D Printing of Metallic Biomaterials. Eng. Regen. 2021, 2, 288–299. [Google Scholar] [CrossRef]
- Rust, B.; Tsaponina, O.; Maniruzzaman, M. Recent Innovations in Additive Manufacturing Across Industries: 3D Printed Products and FDA’s Perspectives. In 3D and 4D Printing in Biomedical Applications; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2019; pp. 443–462. ISBN 978-3-527-81370-4. [Google Scholar]
- Kumar, R.; Kumar, M.; Chohan, J.S. The Role of Additive Manufacturing for Biomedical Applications: A Critical Review. J. Manuf. Process. 2021, 64, 828–850. [Google Scholar] [CrossRef]
- Velásquez-García, L.F.; Kornbluth, Y. Biomedical Applications of Metal 3D Printing. Annu. Rev. Biomed. Eng. 2021, 23, 307–338. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.; Bose, S.; Das, S. 3D Printing of Biomaterials. MRS Bull. 2015, 40, 108–114. [Google Scholar] [CrossRef]
- Ladani, L. Additive Manufacturing of Metals: Materials, Processes, Tests, and Standards; DEStech Publications, Incorporated: Lancaster, PA, USA, 2021; ISBN 978-1-60595-600-8. [Google Scholar]
- Ladani, L.; Sadeghilaridjani, M. Review of Powder Bed Fusion Additive Manufacturing for Metals. Metals 2021, 11, 1391. [Google Scholar] [CrossRef]
- Ma, H.; Suonan, A.; Zhou, J.; Yuan, Q.; Liu, L.; Zhao, X.; Lou, X.; Yang, C.; Li, D.; Zhang, Y. PEEK (Polyether-Ether-Ketone) and Its Composite Materials in Orthopedic Implantation. Arab. J. Chem. 2021, 14, 102977. [Google Scholar] [CrossRef]
- Abraham, C.M. A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments. Open Dent. J. 2014, 8, 50–55. [Google Scholar] [CrossRef]
- Zaman, H.A.; Sharif, S.; Idris, M.H.; Kamarudin, A. Metallic Biomaterials for Medical Implant Applications: A Review. Appl. Mech. Mater. 2015, 735, 19–25. [Google Scholar] [CrossRef]
- Mahapatro, A. Metals for Biomedical Applications and Devices. J. Biomater. Tissue Eng. 2012, 2, 259–268. [Google Scholar] [CrossRef]
- Cooke, S.; Ahmadi, K.; Willerth, S.; Herring, R. Metal Additive Manufacturing: Technology, Metallurgy and Modelling. J. Manuf. Process. 2020, 57, 978–1003. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The Metallurgy and Processing Science of Metal Additive Manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Davoodi, E.; Montazerian, H.; Mirhakimi, A.S.; Zhianmanesh, M.; Ibhadode, O.; Shahabad, S.I.; Esmaeilizadeh, R.; Sarikhani, E.; Toorandaz, S.; Sarabi, S.A. Additively Manufactured Metallic Biomaterials. Bioact. Mater. 2022, 15, 214–249. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T. 14—Orthopaedic Applications of Metallic Biomaterials. In Metals for Biomedical Devices; Niinomi, M., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2010; pp. 329–354. ISBN 978-1-84569-434-0. [Google Scholar]
- Ni, J.; Ling, H.; Zhang, S.; Wang, Z.; Peng, Z.; Benyshek, C.; Zan, R.; Miri, A.K.; Li, Z.; Zhang, X.; et al. Three-Dimensional Printing of Metals for Biomedical Applications. Mater. Today Bio 2019, 3, 100024. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Hussein, M.A.; Al-Aqeeli, N. Magnesium-Based Composites and Alloys for Medical Applications: A Review of Mechanical and Corrosion Properties. J. Alloys Compd. 2019, 792, 1162–1190. [Google Scholar] [CrossRef]
- Haghshenas, M. Mechanical Characteristics of Biodegradable Magnesium Matrix Composites: A Review. J. Magnes. Alloys 2017, 5, 189–201. [Google Scholar] [CrossRef]
- Harun, W.S.W.; Asri, R.I.M.; Alias, J.; Zulkifli, F.H.; Kadirgama, K.; Ghani, S.A.C.; Shariffuddin, J.H.M. A Comprehensive Review of Hydroxyapatite-Based Coatings Adhesion on Metallic Biomaterials. Ceram. Int. 2018, 44, 1250–1268. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Han, S.S.; Kang, I.-K. Recent Advances in the Synthesis, Functionalization and Biomedical Applications of Hydroxyapatite: A Review. RSC Adv. 2017, 7, 7442–7458. [Google Scholar] [CrossRef]
- Li, N.; Liu, W.; Wang, Y.; Zhao, Z.; Yan, T.; Zhang, G.; Xiong, H. Laser Additive Manufacturing on Metal Matrix Composites: A Review. Chin. J. Mech. Eng. 2021, 34, 38. [Google Scholar] [CrossRef]
- Harun, W.S.W.; Manam, N.S.; Kamariah, M.S.I.N.; Sharif, S.; Zulkifly, A.H.; Ahmad, I.; Miura, H. A Review of Powdered Additive Manufacturing Techniques for Ti-6al-4v Biomedical Applications. Powder Technol. 2018, 331, 74–97. [Google Scholar] [CrossRef]
- Ahmed, N.; Barsoum, I.; Haidemenopoulos, G.; Al-Rub, R.K.A. Process Parameter Selection and Optimization of Laser Powder Bed Fusion for 316L Stainless Steel: A Review. J. Manuf. Process. 2022, 75, 415–434. [Google Scholar] [CrossRef]
- Amirtharaj Mosas, K.K.; Chandrasekar, A.R.; Dasan, A.; Pakseresht, A.; Galusek, D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022, 8, 323. [Google Scholar] [CrossRef] [PubMed]
- Vaiani, L.; Boccaccio, A.; Uva, A.E.; Palumbo, G.; Piccininni, A.; Guglielmi, P.; Cantore, S.; Santacroce, L.; Charitos, I.A.; Ballini, A. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. J. Funct. Biomater. 2023, 14, 146. [Google Scholar] [CrossRef] [PubMed]
- Balazic, M.; Kopac, J. Improvements of Medical Implants Based on Modern Materials and New Technologies. J. Achiev. Mater. Manuf. Eng. 2007, 25, 31–34. [Google Scholar]
- Grainger, D. The Williams Dictionary of Biomaterials David F. Williams, Liverpool University Press, Liverpool, Great Britain, 1999. Mater. Today 1999, 2, 29. [Google Scholar] [CrossRef]
- Crawford, L.; Wyatt, M.; Bryers, J.; Ratner, B. Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Adv. Healthc. Mater. 2021, 10, 2002153. [Google Scholar] [CrossRef]
- Williams, D.F. The Williams Dictionary of Biomaterials; Liverpool University Press: Liverpool, UK, 1999; ISBN 978-0-85323-734-1. [Google Scholar]
- Nair, L.S.; Laurencin, C.T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Quinn, J.; McFadden, R.; Chan, C.-W.; Carson, L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience 2020, 23, 101745. [Google Scholar] [CrossRef]
- Brånemark, R.; Branemark, P.I.; Rydevik, B.; Myers, R.R. Osseointegration in Skeletal Reconstruction and Rehabilitation: A Review. J. Rehabil. Res. Dev. 2001, 38, 175–182. [Google Scholar]
- Donaghy, C.L.; McFadden, R.; Smith, G.C.; Kelaini, S.; Carson, L.; Malinov, S.; Margariti, A.; Chan, C.-W. Fibre Laser Treatment of Beta TNZT Titanium Alloys for Load-Bearing Implant Applications: Effects of Surface Physical and Chemical Features on Mesenchymal Stem Cell Response and Staphylococcus Aureus Bacterial Attachment. Coatings 2019, 9, 186. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving Biocompatibility for next Generation of Metallic Implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef]
- International Organization for Standardization. Biological Evaluation of Medical Devices Part 1: Evaluation and Testing within a Risk Management Process; International Standard Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Mitra, I.; Bose, S.; Dernell, W.S.; Dasgupta, N.; Eckstrand, C.; Herrick, J.; Yaszemski, M.J.; Goodman, S.B.; Bandyopadhyay, A. 3D Printing in Alloy Design to Improve Biocompatibility in Metallic Implants. Mater. Today 2021, 45, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Chmielewska, A.; Dean, D. The Role of Stiffness-Matching in Avoiding Stress Shielding-Induced Bone Loss and Stress Concentration-Induced Skeletal Reconstruction Device Failure. Acta Biomater. 2023, 173, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Ridzwan, M.; Shuib, S.; Hassan, A.Y.; Ahmed Shokri, A.; Ibrahim, M. Problem of Stress Shielding and Improvement to the Hip Implant Designs: A Review. J. Med. Sci. 2007, 7, 460–467. [Google Scholar] [CrossRef]
- yadav, P.; Beniwal, G.; Saxena, K.K. A Review on Pore and Porosity in Tissue Engineering. Mater. Today Proc. 2021, 44, 2623–2628. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Espana, F.; Balla, V.K.; Bose, S.; Ohgami, Y.; Davies, N.M. Influence of Porosity on Mechanical Properties and in Vivo Response of Ti6Al4V Implants. Acta Biomater. 2010, 6, 1640–1648. [Google Scholar] [CrossRef]
- Haugen, H.J.; Bertoldi, S. Characterization of Morphology—3D and Porous Structure. In Characterization of Polymeric Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 21–53. ISBN 978-0-08-100737-2. [Google Scholar]
- Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Eng. Part B Rev. 2010, 16, 371–383. [Google Scholar] [CrossRef]
- Sharkawy, A.A.; Klitzman, B.; Truskey, G.A.; Reichert, W.M. Engineering the Tissue Which Encapsulates Subcutaneous Implants. I. Diffusion Properties. J. Biomed. Mater. Res. 1997, 37, 401–412. [Google Scholar] [CrossRef]
- Sharkawy, A.A.; Klitzman, B.; Truskey, G.A.; Reichert, W.M. Engineering the Tissue Which Encapsulates Subcutaneous Implants. III. Effective Tissue Response Times. J. Biomed. Mater. Res. 1998, 40, 598–605. [Google Scholar] [CrossRef]
- Hernandez, J.L.; Woodrow, K.A. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility. Adv. Healthc. Mater. 2022, 11, e2102087. [Google Scholar] [CrossRef]
- Sussman, E.M.; Halpin, M.C.; Muster, J.; Moon, R.T.; Ratner, B.D. Porous Implants Modulate Healing and Induce Shifts in Local Macrophage Polarization in the Foreign Body Reaction. Ann. Biomed. Eng. 2014, 42, 1508–1516. [Google Scholar] [CrossRef]
- Brown, B.N.; Ratner, B.D.; Goodman, S.B.; Amar, S.; Badylak, S.F. Macrophage Polarization: An Opportunity for Improved Outcomes in Biomaterials and Regenerative Medicine. Biomaterials 2012, 33, 3792–3802. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Habibovic, P.; van den Doel, M.; Wilson, C.E.; de Wijn, J.R.; van Blitterswijk, C.A.; de Groot, K. Bone Ingrowth in Porous Titanium Implants Produced by 3D Fiber Deposition. Biomaterials 2007, 28, 2810–2820. [Google Scholar] [CrossRef] [PubMed]
- Bobyn, J.D.; Pilliar, R.M.; Cameron, H.U.; Weatherly, G.C. The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by the Ingrowth of Bone. Clin. Orthop. Relat. Res. 1980, 150, 263–270. [Google Scholar] [CrossRef]
- Bobyn, J.D.; Stackpool, G.J.; Hacking, S.A.; Tanzer, M.; Krygier, J.J. Characteristics of Bone Ingrowth and Interface Mechanics of a New Porous Tantalum Biomaterial. J. Bone Jt. Surg. Br. 1999, 81, 907–914. [Google Scholar] [CrossRef]
- Bobyn, J.D.; Wilson, G.J.; MacGregor, D.C.; Pilliar, R.M.; Weatherly, G.C. Effect of Pore Size on the Peel Strength of Attachment of Fibrous Tissue to Porous-Surfaced Implants. J. Biomed. Mater. Res. 1982, 16, 571–584. [Google Scholar] [CrossRef]
- Boyde, A.; Corsi, A.; Quarto, R.; Cancedda, R.; Bianco, P. Osteoconduction in Large Macroporous Hydroxyapatite Ceramic Implants: Evidence for a Complementary Integration and Disintegration Mechanism. Bone 1999, 24, 579–589. [Google Scholar] [CrossRef]
- Chang, B.S.; Lee, C.K.; Hong, K.S.; Youn, H.J.; Ryu, H.S.; Chung, S.S.; Park, K.W. Osteoconduction at Porous Hydroxyapatite with Various Pore Configurations. Biomaterials 2000, 21, 1291–1298. [Google Scholar] [CrossRef]
- Augustin, J.; Feichtner, F.; Waselau, A.-C.; Julmi, S.; Klose, C.; Wriggers, P.; Maier, H.J.; Meyer-Lindenberg, A. Effect of Pore Size on Tissue Ingrowth and Osteoconductivity in Biodegradable Mg Alloy Scaffolds. J. Appl. Biomater. Funct. Mater. 2022, 20, 22808000221078168. [Google Scholar] [CrossRef]
- Hollister, S.; Lin, C.; Saito, E.; Lin, C.; Schek, R.; Taboas, J.; Williams, J.; Partee, B.; Flanagan, C.; Diggs, A.; et al. Engineering Craniofacial Scaffolds. Orthod. Craniofacial Res. 2005, 8, 162–173. [Google Scholar] [CrossRef]
- Albrektsson, T.; Johansson, C. Osteoinduction, Osteoconduction and Osseointegration. Eur. Spine J. 2001, 10, S96–S101. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.C. Metal Corrosion in the Human Body: The Ultimate Bio-Corrosion Scenario. Electrochem. Soc. Interface 2008, 17, 31–34. [Google Scholar] [CrossRef]
- bin Anwar Fadzil, A.F.; Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S. Role of Surface Quality on Biocompatibility of Implants—A Review. Ann. 3D Print. Med. 2022, 8, 100082. [Google Scholar] [CrossRef]
- Alla, R.K.; Ginjupalli, K.; Upadhya, N.; Mohammed, S.; sekar, R.; Ravi, R. Surface Roughness of Implants: A Review. Trends Biomater. Artif. Organs 2011, 25, 112–118. [Google Scholar]
- Li, B.E.; Li, Y.; Min, Y.; Hao, J.Z.; Liang, C.Y.; Li, H.P.; Wang, G.C.; Liu, S.M.; Wang, H.S. Synergistic Effects of Hierarchical Hybrid Micro/Nanostructures on the Biological Properties of Titanium Orthopaedic Implants. RSC Adv. 2015, 5, 49552–49558. [Google Scholar] [CrossRef]
- Kane, R.; Ma, P.X. Mimicking the Nanostructure of Bone Matrix to Regenerate Bone. Mater. Today 2013, 16, 418–423. [Google Scholar] [CrossRef]
- Wong, M.; Eulenberger, J.; Schenk, R.; Hunziker, E. Effect of Surface Topology on the Osseointegration of Implant Materials in Trabecular Bone. J. Biomed. Mater. Res. 1995, 29, 1567–1575. [Google Scholar] [CrossRef]
- Barfeie, A.; Wilson, J.; Rees, J. Implant Surface Characteristics and Their Effect on Osseointegration. Br. Dent. J. 2015, 218, E9. [Google Scholar] [CrossRef]
- Surface Energy. Wikipedia 2024. Available online: https://en.wikipedia.org/wiki/Surface_energy (accessed on 30 August 2024).
- Zhao, G.; Schwartz, Z.; Wieland, M.; Rupp, F.; Geis-Gerstorfer, J.; Cochran, D.L.; Boyan, B.D. High Surface Energy Enhances Cell Response to Titanium Substrate Microstructure. J. Biomed. Mater. Res. Part A 2005, 74A, 49–58. [Google Scholar] [CrossRef]
- Barbosa, T.P.; Naves, M.M.; Menezes, H.H.; Pinto, P.H.; de Mello, J.D.; Costa, H.L. Topography and Surface Energy of Dental Implants: A Methodological Approach. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 1895–1907. [Google Scholar] [CrossRef]
- Chan, C.-W.; Carson, L.; Smith, G.C.; Morelli, A.; Lee, S. Enhancing the Antibacterial Performance of Orthopaedic Implant Materials by Fibre Laser Surface Engineering. Appl. Surf. Sci. 2017, 404, 67–81. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, W.; Wang, Y.; Zhang, B.; Wang, H.; Lin, C.; Zhang, L. Effect of Superhydrophobic Surface of Titanium on Staphylococcus Aureus Adhesion. J. Nanomater. 2011, 2011, e178921. [Google Scholar] [CrossRef]
- Gittens, R.A.; Scheideler, L.; Rupp, F.; Hyzy, S.L.; Geis-Gerstorfer, J.; Schwartz, Z.; Boyan, B.D. A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects. Acta Biomater. 2014, 10, 2907–2918. [Google Scholar] [CrossRef] [PubMed]
- Giannella, R.A. Chapter 107—Infectious Enteritis and Proctocolitis and Bacterial Food Poisoning. In Sleisenger and Fordtran’s Gastrointestinal and Liver Disease, 9th ed.; Feldman, M., Friedman, L.S., Brandt, L.J., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2010; pp. 1843–1887.e7. ISBN 978-1-4160-6189-2. [Google Scholar]
- Phillips, D.H.; Arlt, V.M. Genotoxicity: Damage to DNA and Its Consequences. EXS 2009, 99, 87–110. [Google Scholar] [CrossRef]
- Amin Yavari, S.; Wauthle, R.; van der Stok, J.; Riemslag, A.C.; Janssen, M.; Mulier, M.; Kruth, J.P.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Fatigue Behavior of Porous Biomaterials Manufactured Using Selective Laser Melting. Mater. Sci. Eng. C 2013, 33, 4849–4858. [Google Scholar] [CrossRef]
- Fatigue|Fatigue Cracking, Stress Corrosion, Fracture Mechanics|Britannica. Available online: https://www.britannica.com/science/fatigue-materials-failure (accessed on 24 May 2024).
- Teoh, S.H. Fatigue of Biomaterials: A Review. Int. J. Fatigue 2000, 22, 825–837. [Google Scholar] [CrossRef]
- Allavikutty, R.; Gupta, P.; Santra, T.S.; Rengaswamy, J. Additive Manufacturing of Mg Alloys for Biomedical Applications: Current Status and Challenges. Curr. Opin. Biomed. Eng. 2021, 18, 100276. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Liu, J.; Wang, L.; Tang, Y.; Wang, K. A Review on Magnesium Alloys for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 953344. [Google Scholar] [CrossRef]
- Dutta, S.; Gupta, S.; Roy, M. Recent Developments in Magnesium Metal-Matrix Composites for Biomedical Applications: A Review. ACS Biomater. Sci. Eng. 2020, 6, 4748–4773. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Dianyu, E.; Yang, W.; Qi, F.; Xie, D.; Shen, L.; Peng, S.; Shuai, C. Mg Bone Implant: Features, Developments and Perspectives. Mater. Des. 2020, 185, 108259. [Google Scholar] [CrossRef]
- Laires, M.; Monteiro, C.; Biosci, M.B.-F. Role of Cellular Magnesium in Health and Human Disease. Front. Biosci. 2004, 9, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Lin, T.; Shao, H.; Wang, H.; Wang, X.; Song, K.; Li, Q. Advances in Degradation Behavior of Biomedical Magnesium Alloys: A Review. J. Alloys Compd. 2022, 908, 164600. [Google Scholar] [CrossRef]
- Lu, Y.; Deshmukh, S.; Jones, I.; Chiu, Y.L. Biodegradable Magnesium Alloys for Orthopaedic Applications. Biomater. Transl. 2021, 2, 214. [Google Scholar] [CrossRef]
- Amukarimi, S.; Mozafari, M. Biodegradable Magnesium-based Biomaterials: An Overview of Challenges and Opportunities. MedComm 2021, 2, 123–144. [Google Scholar] [CrossRef]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications. Mater. Sci. Eng. C 2016, 68, 948–963. [Google Scholar] [CrossRef]
- Campos Becerra, L.H.; Hernández Rodríguez, M.A.L.; Esquivel Solís, H.; Lesso Arroyo, R.; Torres Castro, A. Bio-Inspired Biomaterial Mg–Zn–Ca: A Review of the Main Mechanical and Biological Properties of Mg-Based Alloys. Biomed. Phys. Eng. Express 2020, 6, 042001. [Google Scholar] [CrossRef]
- H, I.; Ns, M.; M, E. Mechanical and In Vitro Corrosion Properties of a Heat-Treated Mg-Zn-Ca-Mn Alloy as a Potential Bioresorbable Material. Adv. Metall. Mater. Eng. 2017, 1, 1–17. [Google Scholar]
- Mohamed, A.; El-Aziz, A.M.; Breitinger, H.G. Study of the Degradation Behavior and the Biocompatibility of Mg–0.8Ca Alloy for Orthopedic Implant Applications. J. Magnes. Alloys 2019, 7, 249–257. [Google Scholar] [CrossRef]
- Ahmadi, M.; Tabary, S.A.A.B.; Rahmatabadi, D.; Ebrahimi, M.S.; Abrinia, K.; Hashemi, R. Review of Selective Laser Melting of Magnesium Alloys: Advantages, Microstructure and Mechanical Characterizations, Defects, Challenges, and Applications. J. Mater. Res. Technol. 2022, 19, 1537–1562. [Google Scholar] [CrossRef]
- Al-Maharma, A.Y.; Patil, S.P.; Markert, B. Effects of Porosity on the Mechanical Properties of Additively Manufactured Components: A Critical Review. Mater. Res. Express 2020, 7, 122001. [Google Scholar] [CrossRef]
- Li, K.; Ji, C.; Bai, S.; Jiang, B.; Pan, F. Selective Laser Melting of Magnesium Alloys: Necessity, Formability, Performance, Optimization and Applications. J. Mater. Sci. Technol. 2023, 154, 65–93. [Google Scholar] [CrossRef]
- Kopp, A.; Derra, T.; Müther, M.; Jauer, L.; Schleifenbaum, J.H.; Voshage, M.; Jung, O.; Smeets, R.; Kröger, N. Influence of Design and Postprocessing Parameters on the Degradation Behavior and Mechanical Properties of Additively Manufactured Magnesium Scaffolds. Acta Biomater. 2019, 98, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, J.; Pavanram, P.; Leeflang, M.A.; Fockaert, L.I.; Pouran, B.; Tümer, N.; Schröder, K.-U.; Mol, J.M.C.; Weinans, H.; et al. Additively Manufactured Biodegradable Porous Magnesium. Acta Biomater. 2018, 67, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wen, P.; Guo, H.; Xia, D.; Zheng, Y.; Jauer, L.; Poprawe, R.; Voshage, M.; Schleifenbaum, J.H. Additive Manufacturing of Biodegradable Metals: Current Research Status and Future Perspectives. Acta Biomater. 2019, 98, 3–22. [Google Scholar] [CrossRef]
- Hyer, H.; Zhou, L.; Liu, Q.; Wu, D.; Song, S.; Bai, Y.; McWilliams, B.; Cho, K.; Sohn, Y. High Strength WE43 Microlattice Structures Additively Manufactured by Laser Powder Bed Fusion. Materialia 2021, 16, 101067. [Google Scholar] [CrossRef]
- Xie, K.; Wang, N.; Guo, Y.; Zhao, S.; Tan, J.; Wang, L.; Li, G.; Wu, J.; Yang, Y.; Xu, W.; et al. Additively Manufactured Biodegradable Porous Magnesium Implants for Elimination of Implant-Related Infections: An in Vitro and in Vivo Study. Bioact. Mater. 2022, 8, 140–152. [Google Scholar] [CrossRef]
- Li, Y.; Jahr, H.; Zhang, X.-Y.; Leeflang, M.A.; Li, W.; Pouran, B.; Tichelaar, F.D.; Weinans, H.; Zhou, J.; Zadpoor, A.A. Biodegradation-Affected Fatigue Behavior of Additively Manufactured Porous Magnesium. Addit. Manuf. 2019, 28, 299–311. [Google Scholar] [CrossRef]
- Antoniac, I.; Miculescu, M.; Mănescu, V.; Stere, A.; Quan, P.H.; Păltânea, G.; Robu, A.; Earar, K. Magnesium-Based Alloys Used in Orthopedic Surgery. Materials 2022, 15, 1148. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, S.; Yang, X.; Xi, Z.; Zhao, L.; Cen, L.; Lu, E.; Yang, Y. Novel Fabricating Process for Porous Polyglycolic Acid Scaffolds by Melt-Foaming Using Supercritical Carbon Dioxide. ACS Biomater. Sci. Eng. 2018, 4, 694–706. [Google Scholar] [CrossRef]
- Shuai, C.; Li, Y.; Wang, G.; Yang, W.; Peng, S.; Feng, P. Surface Modification of Nanodiamond: Toward the Dispersion of Reinforced Phase in Poly-l-Lactic Acid Scaffolds. Int. J. Biol. Macromol. 2019, 126, 1116–1124. [Google Scholar] [CrossRef]
- Panayotov, I.V.; Orti, V.; Cuisinier, F.; Yachouh, J. Polyetheretherketone (PEEK) for Medical Applications. J. Mater. Sci. Mater. Med. 2016, 27, 118. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, J.; Xiong, X.; Peng, X.; Chen, D.; Pan, F. Research Advances of Magnesium and Magnesium Alloys Worldwide in 2021. J. Magnes. Alloys 2022, 10, 863–898. [Google Scholar] [CrossRef]
- Reilly, D.T.; Burstein, A.H. The Elastic and Ultimate Properties of Compact Bone Tissue. Journal of Biomechanics 1975, 8, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Mirzaali, M.J.; Schwiedrzik, J.J.; Thaiwichai, S.; Best, J.P.; Michler, J.; Zysset, P.K.; Wolfram, U. Mechanical Properties of Cortical Bone and Their Relationships with Age, Gender, Composition and Microindentation Properties in the Elderly. Bone 2016, 93, 196–211. [Google Scholar] [CrossRef]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef]
- Dong, X.N.; Acuna, R.L.; Luo, Q.; Wang, X. Orientation Dependence of Progressive Post-Yield Behavior of Human Cortical Bone in Compression. J Biomech 2012, 45, 2829–2834. [Google Scholar] [CrossRef]
- American Institute of Chemical Engineers. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Detroit, MI, USA, 1990; ISBN 978-1-62708-162-7. [Google Scholar]
- Elektron® WE43B 2018. Available online: https://www.luxfermeltechnologies.com/wp-content/uploads/2019/01/113909-Luxfer-MEL-Technologies-DS-467-Elektron-WE43B-ST1.pdf (accessed on 30 August 2024).
- Charyeva, O.; Dakischew, O.; Sommer, U.; Heiss, C.; Schnettler, R.; Lips, K.S. Biocompatibility of Magnesium Implants in Primary Human Reaming Debris-Derived Cells Stem Cells in Vitro. J. Orthop. Traumatol. 2016, 17, 63. [Google Scholar] [CrossRef]
- de Baaij, J.H.F.; Hoenderop, J.G.J.; Bindels, R.J.M. Magnesium in Man: Implications for Health and Disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef]
- Sanchez, A.H.M.; Luthringer, B.J.C.; Feyerabend, F.; Willumeit, R. Mg and Mg Alloys: How Comparable Are in Vitro and in Vivo Corrosion Rates? A Review. Acta Biomater. 2015, 13, 16–31. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Sun, K.; Fu, R.; Wang, G. Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications. Materials 2022, 15, 2613. [Google Scholar] [CrossRef]
- Williams, D. New Interests in Magnesium. Med. Device Technol. 2006, 17, 9–10. [Google Scholar] [PubMed]
- Chakraborty Banerjee, P.; Al-Saadi, S.; Choudhary, L.; Harandi, S.E.; Singh, R. Magnesium Implants: Prospects and Challenges. Materials 2019, 12, 136. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Dietzel, W.; Witte, F.; Hort, N.; Blawert, C. Progress and Challenge for Magnesium Alloys as Biomaterials. Adv. Eng. Mater. 2008, 10, B3–B14. [Google Scholar] [CrossRef]
- Poinern, G.E.J.; Brundavanam, S.; Fawcett, D. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. Am. J. Biomed. Eng. 2012, 2, 218–240. [Google Scholar] [CrossRef]
- Song, G. Control of Biodegradation of Biocompatable Magnesium Alloys. Corros. Sci. 2007, 49, 1696–1701. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, W.-l.; Gu, X.-j.; Liu, Y.-h.; Cui, Z.-q.; Wang, L.-f.; Wang, H.-x. Tailoring the Microstructural Characteristic and Improving the Corrosion Resistance of Extruded Dilute Mg–0.5Bi–0.5Sn Alloy by Microalloying with Mn. J. Magnes. Alloys 2021, 9, 1656–1668. [Google Scholar] [CrossRef]
- Tang, W.; Li, Y.; Osimiri, L.; Zhang, C. Osteoblast-Specific Transcription Factor Osterix (Osx) Is an Upstream Regulator of Satb2 during Bone Formation. J. Biol. Chem. 2011, 286, 32995–33002. [Google Scholar] [CrossRef]
- Osteoblasts & Osteoclasts: Function, Purpose & Anatomy. Available online: https://my.clevelandclinic.org/health/body/24871-osteoblasts-and-osteoclasts (accessed on 30 August 2024).
- Tuna, S.H.; Karaca, E.; Aslan, I.; Pekkan, G.; Pekmez, N.Ö. Evaluation of Corrosion Resistance of Co-Cr Alloys Fabricated with Different Metal Laser Sintering Systems. J. Adv. Prosthodont. 2020, 12, 114. [Google Scholar] [CrossRef]
- ASTM F75-18; Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants (UNS R30075). F75-23. ASTM International: West Conshohocken, PA, USA, 2023.
- Acharya, S.; Soni, R.; Suwas, S.; Chatterjee, K. Additive Manufacturing of Co–Cr Alloys for Biomedical Applications: A Concise Review. J. Mater. Res. 2021, 36, 3746–3760. [Google Scholar] [CrossRef]
- Liao, Y.; Hoffman, E.; Wimmer, M.; Fischer, A.; Jacobs, J.; Marks, L. CoCrMo Metal-on-Metal Hip Replacements. Phys. Chem. Chem. Phys. 2013, 15, 746–756. [Google Scholar] [CrossRef]
- Sahoo, P.; Das, S.K.; Paulo Davim, J. Tribology of Materials for Biomedical Applications. Mech. Behav. Biomater. 2019, 1, 1–45. [Google Scholar] [CrossRef]
- Dolgov, N.; Dikova, T.; Dzhendov, D.; Pavlova, D.; Simov, M. Mechanical Properties of Dental Co-Cr Alloys Fabricated via Casting and Selective Laser Melting. Mater. Science. Non-Equilib. Phase Transform. 2016, 2, 3–7. [Google Scholar]
- Li, H.; Wang, M.; Lou, D.; Xia, W.; Fang, X. Microstructural Features of Biomedical Cobalt–Chromium–Molybdenum (CoCrMo) Alloy from Powder Bed Fusion to Aging Heat Treatment. J. Mater. Sci. Technol. 2020, 45, 146–156. [Google Scholar] [CrossRef]
- Konieczny, B.; Szczesio-Wlodarczyk, A.; Sokolowski, J.; Bociong, K. Challenges of Co–Cr Alloy Additive Manufacturing Methods in Dentistry—The Current State of Knowledge (Systematic Review). Materials 2020, 13, 3524. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fu, M.W.; Lu, J.; Yang, H. Ductile Fracture: Experiments and Computations. Int. J. Plast. 2011, 27, 147–180. [Google Scholar] [CrossRef]
- Lee, S.H.; Nomura, N.; Chiba, A. Significant Improvement in Mechanical Properties of Biomedical Co-Cr-Mo Alloys with Combination of N Addition and Cr-Enrichment. Mater. Trans. 2008, 49, 260–264. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Davis, J.R. Handbook of Materials for Medical Devices; ASM International: Materials Park, OH, USA, 2003. [Google Scholar]
- Bandyopadhyay, A.; Avila, J.D.; Mitra, I.; Bose, S. Additive Manufacturing of Cobalt-Chromium Alloy Biomedical Devices; ASM International: Detroit, MI, USA, 2022. [Google Scholar] [CrossRef]
- Acharya, S.; Gopal, V.; Gupta, S.K.; Nilawar, S.; Manivasagam, G.; Suwas, S.; Chatterjee, K. Anisotropy of Additively Manufactured Co–28Cr–6Mo Influences Mechanical Properties and Biomedical Performance. ACS Appl. Mater. Interfaces 2022, 14, 21906–21915. [Google Scholar] [CrossRef]
- Ren, F.; Zhu, W.; Chu, K. Fabrication, Tribological and Corrosion Behaviors of Ultra-Fine Grained Co–28Cr–6Mo Alloy for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2016, 60, 139–147. [Google Scholar] [CrossRef]
- Sánchez-De Jesús, F.; Bolarín-Miró, A.M.; Torres-Villaseñor, G.; Cortés-Escobedo, C.A.; Betancourt-Cantera, J.A. Mechanical Alloying of Biocompatible Co–28Cr–6Mo Alloy. J. Mater. Sci. Mater. Med. 2010, 21, 2021–2026. [Google Scholar] [CrossRef]
- Efremenko, B.; Zurnadzhy, V.; Chabak, Y.; Lekatou, A.; Horňak, P.; Vojtko, M.; Efremenko, V. Microstructure-Properties Characterization of Selective Laser Melted Biomedical Co-28Cr-6Mo Alloy. Mater. Sci. Forum 2023, 1081, 143–148. [Google Scholar] [CrossRef]
- Iatecola, A.; Longhitano, G.A.; Antunes, L.H.M.; Jardini, A.L.; Miguel, E.d.C.; Béreš, M.; Lambert, C.S.; Andrade, T.N.; Buchaim, R.L.; Buchaim, D.V.; et al. Osseointegration Improvement of Co-Cr-Mo Alloy Produced by Additive Manufacturing. Pharmaceutics 2021, 13, 724. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-L.; Choi, S.-W.; Oh, J.M.; Hong, J.-K.; Yeom, J.-T.; Kang, J.-H.; Mei, Q.-S.; Park, C.H. Bimodal Grain Structures and Tensile Properties of a Biomedical Co–20Cr–15W–10Ni Alloy with Different Pre-Strains. Rare Met. 2021, 40, 20–30. [Google Scholar] [CrossRef]
- Ueki, K.; Ueda, K.; Nakai, M.; Nakano, T.; Narushima, T. Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K. Met. Mater. Trans. A 2018, 49, 2393–2404. [Google Scholar] [CrossRef]
- Ueki, K.; Ueda, K.; Narushima, T. Microstructure and Mechanical Properties of Heat-Treated Co-20Cr-15W-10Ni Alloy for Biomedical Application. Met. Mater. Trans. A 2016, 47, 2773–2782. [Google Scholar] [CrossRef]
- Li, C.-L.; Oh, J.M.; Choi, S.-W.; Hong, J.-K.; Yeom, J.-T.; Mei, X.-M.; Mei, Q.; Yu, Z.; Park, C.H. Study on Microstructure and Mechanical Property of a Biomedical Co-20Cr-15W-10Ni Alloy during Multi-Pass Thermomechanical Processing. Mater. Sci. Eng. A 2020, 785, 139388. [Google Scholar] [CrossRef]
- ASTM F1091-20; Standard Specification for Wrought Cobalt-20Chromium-15Tungsten-10Nickel Alloy Surgical Fixation Wire (UNS R30605). ASTM International: West Conshohocken, PA, USA, 2020.
- Narushima, T. 19—New-Generation Metallic Biomaterials. In Metals for Biomedical Devices, 2nd ed.; Niinomi, M., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawsto, UK, 2019; pp. 495–521. ISBN 978-0-08-102666-3. [Google Scholar]
- Hiyama, K.; Ueki, K.; Ueda, K.; Narushima, T. Probing Plastic Deformation-Related Properties in Static Recrystallized Co–Cr–Fe–Ni–Mo Alloy for Biomedical Applications. Mater. Sci. Eng. A 2024, 899, 146458. [Google Scholar] [CrossRef]
- ASTM F1058-16; Standard Specification for Wrought 40Cobalt-20Chromium-16Iron-15Nickel-7Molybdenum Alloy Wire and Strip for Surgical Implant Applications (UNS R30003 and UNS R30008). ASTM International: West Conshohocken, PA, USA, 2017.
- Czarnek, K.; Terpiłowska, S.; Siwicki, A.K. Review Paper Selected Aspects of the Action of Cobalt Ions in the Human Body. cejoi 2015, 2, 236–242. [Google Scholar] [CrossRef]
- Ortega, R.; Bresson, C.; Fraysse, A.; Sandre, C.; Devès, G.; Gombert, C.; Tabarant, M.; Bleuet, P.; Seznec, H.; Simionovici, A.; et al. Cobalt Distribution in Keratinocyte Cells Indicates Nuclear and Perinuclear Accumulation and Interaction with Magnesium and Zinc Homeostasis. Toxicol. Lett. 2009, 188, 26–32. [Google Scholar] [CrossRef]
- Cobalt Poisoning: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/ency/article/002495.htm (accessed on 18 June 2024).
- Chen, R.J.; Lee, V.R. Cobalt Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- SA Health Chromium: Health Effects. Available online: https://www.sahealth.sa.gov.au/wps/wcm/connect/Public+Content/SA+Health+Internet/Conditions/Chemicals+and+contaminants/Chromium+health+effects (accessed on 30 August 2024).
- Concerns about Metal-on-Metal Hip Implants; FDA: Silver Spring, MD, USA, 2023. Available online: https://www.fda.gov/medical-devices/metal-metal-hip-implants/concerns-about-metal-metal-hip-implants (accessed on 30 August 2024).
- Definition of Hyperplasia—NCI Dictionary of Cancer Terms—NCI. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/hyperplasia (accessed on 24 May 2024).
- Karimi, S.; Alfantazi, A.M. Ion Release and Surface Oxide Composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V Alloys Immersed in Human Serum Albumin Solutions. Mater. Sci. Eng. C 2014, 40, 435–444. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef] [PubMed]
- Gotman, I. Characteristics of Metals Used in Implants. J. Endourol. 1997, 11, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Suárez, J.V.; Gómez, J.F.; García, M.P.; Pérez, J.R. Poisoning by Metals Used in Prosthetic Materials in Orthopedics and Its Current Management. Rev. Cuba. Ortop. Traumatol. 2021, 35, 1–10. [Google Scholar]
- Argentieri, M.; Kommala, D.; Schabowsky, C.N. Cobalt Chromium (Co-Cr) Safety Profile. Available online: https://www.fda.gov/media/165145/download (accessed on 30 August 2024).
- Fu, W.; Liu, S.; Jiao, J.; Xie, Z.; Huang, X.; Lu, Y.; Liu, H.; Hu, S.; Zuo, E.; Kou, N. Wear Resistance and Biocompatibility of Co-Cr Dental Alloys Fabricated with CAST and SLM Techniques. Materials 2022, 15, 3263. [Google Scholar] [CrossRef]
- Duarte, I.; Mendonça, R.F.; Korkes, K.L.; Lazzarini, R.; Hafner, M.d.F.S. Nickel, Chromium and Cobalt: The Relevant Allergens in Allergic Contact Dermatitis. Comparative Study between Two Periods: 1995–2002 and 2003–2015. An. Bras. Dermatol. 2018, 93, 59. [Google Scholar] [CrossRef]
- Pais, I.; Fehér, M.; Farkas, E.; Szabó, Z.; Cornides, I. Titanium as a New Trace Element. Commun. Soil Sci. Plant Anal. 1977, 8, 407–410. [Google Scholar] [CrossRef]
- Rupp, F.; Gittens, R.A.; Scheideler, L.; Marmur, A.; Boyan, B.D.; Schwartz, Z.; Geis-Gerstorfer, J. A Review on the Wettability of Dental Implant Surfaces I: Theoretical and Experimental Aspects. Acta Biomater. 2014, 10, 2894–2906. [Google Scholar] [CrossRef]
- Niinomi, M.; Liu, Y.; Nakai, M.; Liu, H.; Li, H. Biomedical Titanium Alloys with Young’s Moduli Close to That of Cortical Bone. Regen. Biomater. 2016, 3, 173–185. [Google Scholar] [CrossRef]
- Aufa, A.N.; Hassan, M.Z.; Ismail, Z. Recent Advances in Ti-6Al-4V Additively Manufactured by Selective Laser Melting for Biomedical Implants: Prospect Development. J. Alloys Compd. 2022, 896, 163072. [Google Scholar] [CrossRef]
- Nicholson, J.W. Titanium Alloys for Dental Implants: A Review. Prosthesis 2020, 2, 100–116. [Google Scholar] [CrossRef]
- Sarraf, M.; Rezvani Ghomi, E.; Alipour, S.; Ramakrishna, S.; Liana Sukiman, N. A State-of-the-Art Review of the Fabrication and Characteristics of Titanium and Its Alloys for Biomedical Applications. Bio-Des. Manuf. 2022, 5, 371–395. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M.; Nakai, M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int. J. Biomater. 2011, 2011, 836587. [Google Scholar] [CrossRef] [PubMed]
- Menezes, P.; Misra, M.; Kumar, P. Tribology of Additively Manufactured Materials: Fundamentals, Modeling, and Applications; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Bocchetta, P.; Chen, L.-Y.; Tardelli, J.D.C.; dos Reis, A.C.; Almeraya-Calderón, F.; Leo, P. Passive Layers and Corrosion Resistance of Biomedical Ti-6Al-4V and β-Ti Alloys. Coatings 2021, 11, 487. [Google Scholar] [CrossRef]
- Rack, H.J.; Qazi, J.I. Titanium Alloys for Biomedical Applications. Mater. Sci. Eng. C 2006, 26, 1269–1277. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2023, 17, 114. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Cui, Y.-W.; Zhang, L.-C. Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals 2020, 10, 1139. [Google Scholar] [CrossRef]
- Kodama, T. Study on biocompatibility of titanium alloys. Kokubyo Gakkai Zasshi 1989, 56, 263–288. [Google Scholar] [CrossRef]
- Lemons, J.E.; Niemann, K.M.W.; Weiss, A.B. Biocompatibility Studies on Surgical-Grade Titanium-, Cobalt-, and Iron-Base Alloys. J. Biomed. Mater. Res. 1976, 10, 549–553. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Gopinath, A.; Lu, W.F. A New Design of 3D-Printed Orthopedic Bone Plates with Auxetic Structures to Mitigate Stress Shielding and Improve Intra-Operative Bending. Bio-Des. Manuf. 2020, 3, 98–108. [Google Scholar] [CrossRef]
- Froes, F.; Qian, M. Titanium in Medical and Dental Applications; Woodhead Publishing: Sawston, UK, 2018; ISBN 978-0-12-812457-4. [Google Scholar]
- Rowe, P.; Koller, A.; Sharma, S. Physiology, Bone Remodeling. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Lewallen, E.A.; Riester, S.M.; Bonin, C.A.; Kremers, H.M.; Dudakovic, A.; Kakar, S.; Cohen, R.C.; Westendorf, J.J.; Lewallen, D.G.; van Wijnen, A.J. Biological Strategies for Improved Osseointegration and Osteoinduction of Porous Metal Orthopedic Implants. Tissue Eng. Part B Rev. 2015, 21, 218–230. [Google Scholar] [CrossRef]
- ASTM B265-20a; Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate. ASTM International: West Conshohocken, PA, USA, 2010.
- Elias, C.N.; Lima, J.H.C.; Valiev, R.; Meyers, M.A. Biomedical Applications of Titanium and Its Alloys. JOM 2008, 60, 46–49. [Google Scholar] [CrossRef]
- Khodaei, M.; Hossein Kelishadi, S. The Effect of Different Oxidizing Ions on Hydrogen Peroxide Treatment of Titanium Dental Implant. Surf. Coat. Technol. 2018, 353, 158–162. [Google Scholar] [CrossRef]
- Dissemination of Wear Particles to the Liver, Spleen, and Ab...: JBJS. Available online: https://journals-lww-com.ezproxy1.lib.asu.edu/jbjsjournal/abstract/2000/04000/dissemination_of_wear_particles_to_the_liver,.2.aspx (accessed on 2 November 2023).
- Semlitsch, M.F.; Weber, H.; Streicher, R.M.; Schön, R. Joint Replacement Components Made of Hot-Forged and Surface-Treated Ti-6Al-7Nb Alloy. Biomaterials 1992, 13, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Sansone, V.; Pagani, D.; Melato, M. The Effects on Bone Cells of Metal Ions Released from Orthopaedic Implants. A Review. Clin. Cases Min. Bone Metab. 2013, 10, 34–40. [Google Scholar] [CrossRef] [PubMed]
- El-Hajje, A.; Kolos, E.C.; Wang, J.K.; Maleksaeedi, S.; He, Z.; Wiria, F.E.; Choong, C.; Ruys, A.J. Physical and Mechanical Characterisation of 3D-Printed Porous Titanium for Biomedical Applications. J. Mater. Sci. Mater. Med. 2014, 25, 2471–2480. [Google Scholar] [CrossRef]
- Soro, N.; Brassart, L.; Chen, Y.; Veidt, M.; Attar, H.; Dargusch, M.S. Finite Element Analysis of Porous Commercially Pure Titanium for Biomedical Implant Application. Mater. Sci. Eng. A 2018, 725, 43–50. [Google Scholar] [CrossRef]
- Haslauer, C.M.; Springer, J.C.; Harrysson, O.L.A.; Loboa, E.G.; Monteiro-Riviere, N.A.; Marcellin-Little, D.J. In Vitro Biocompatibility of Titanium Alloy Discs Made Using Direct Metal Fabrication. Med. Eng. Phys. 2010, 32, 645–652. [Google Scholar] [CrossRef]
- Oliveira, J.P.; LaLonde, A.D.; Ma, J. Processing Parameters in Laser Powder Bed Fusion Metal Additive Manufacturing. Mater. Des. 2020, 193, 108762. [Google Scholar] [CrossRef]
- Beaman, J.J. Historical Background. Fundam. Laser Powder Bed Fusion Met. 2021, 1, 1–14. [Google Scholar] [CrossRef]
- Mazzoli, A. Selective Laser Sintering in Biomedical Engineering. Med. Biol. Eng. Comput. 2012, 51, 245–256. [Google Scholar] [CrossRef]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef] [PubMed]
- Saptarshi, S.M.; Zhou, C. Chapter 2—Basics of 3D Printing: Engineering Aspects. In 3D Printing in Orthopaedic Surgery; Dipaola, M., Wodajo, F.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 17–30. ISBN 978-0-323-58118-9. [Google Scholar]
- Kantaros, A.; Ganetsos, T.; Petrescu, F.I.T. Three-Dimensional Printing and 3D Scanning: Emerging Technologies Exhibiting High Potential in the Field of Cultural Heritage. Appl. Sci. 2023, 13, 4777. [Google Scholar] [CrossRef]
- Kumar, S. Selective Laser Sintering: A Qualitative and Objective Approach. JOM 2003, 55, 43–47. [Google Scholar] [CrossRef]
- Garcia, J.; Yang, Z.L.; Mongrain, R.; Leask, R.L.; Lachapelle, K. 3D Printing Materials and Their Use in Medical Education: A Review of Current Technology and Trends for the Future. BMJ Simul. Technol. Enhanc. Learn. 2018, 4, 27. [Google Scholar] [CrossRef]
- Yusuf, S.M.; Cutler, S.; Gao, N. Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry. Metals 2019, 9, 1286. [Google Scholar] [CrossRef]
- Wahlström, T.; Sahlström, J. Additive Manufacturing in Production. Master’s Thesis, Lund University, Lund, Sweden, 2016. [Google Scholar]
- Rajendran, S.; Palani, G.; Kanakaraj, A.; Shanmugam, V.; Veerasimman, A.; Gądek, S.; Korniejenko, K.; Marimuthu, U. Metal and Polymer Based Composites Manufactured Using Additive Manufacturing—A Brief Review. Polymers 2023, 15, 2564. [Google Scholar] [CrossRef]
- Flodberg, G.; Pettersson, H.; Yang, L. Pore Analysis and Mechanical Performance of Selective Laser Sintered Objects. Addit. Manuf. 2018, 24, 307–315. [Google Scholar] [CrossRef]
- Riza, S.H.; Masood, S.H.; Rashid, R.A.R.; Chandra, S. Selective Laser Sintering in Biomedical Manufacturing. Met. Biomater. Process. Med. Device Manuf. 2020, 193–233. [Google Scholar] [CrossRef]
- Mangano, F.; Bazzoli, M.; Tettamanti, L.; Farronato, D.; Maineri, M.; Macchi, A.; Mangano, C. Custom-Made, Selective Laser Sintering (SLS) Blade Implants as a Non-Conventional Solution for the Prosthetic Rehabilitation of Extremely Atrophied Posterior Mandible. Lasers Med. Sci. 2013, 28, 1241–1247. [Google Scholar] [CrossRef]
- Lee Ventola, C. Medical Applications for 3D Printing: Current and Projected Uses. Pharm. Ther. 2014, 39, 704. [Google Scholar]
- Aimar, A.; Palermo, A.; Innocenti, B. The Role of 3D Printing in Medical Applications: A State of the Art. J. Healthc. Eng. 2019, 2019, 5340616. [Google Scholar] [CrossRef] [PubMed]
- Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs. J. Orthop. Res. 2016, 34, 369–385. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, J.; Zhang, L.; Zhang, Y.; Song, B.; Wang, X.; Fan, J.; Liu, Q.; Shi, Y. Laser Powder Bed Fusion Additive Manufacturing of NiTi Shape Memory Alloys: A Review. Int. J. Extrem. Manuf. 2023, 5, 032001. [Google Scholar] [CrossRef]
- Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties. Prog. Mater. Sci. 2015, 74, 401–477. [Google Scholar] [CrossRef]
- Kruth, J.P.; Vandenbroucke, B.; Vaerenbergh, J.V.; Mercelis, P. Benchmarking of Different SLS/SLM Processes as Rapid Manufacturing Techniques. In Proceedings of the International Conference Polymers & Moulds Innovations (PMI), Gent, Belgium, 20–23 April 2005. [Google Scholar]
- Klocke, F.; Arntz, K.; Teli, M.; Winands, K.; Wegener, M.; Oliari, S. State-of-the-Art Laser Additive Manufacturing for Hot-Work Tool Steels. Procedia CIRP 2017, 63, 58–63. [Google Scholar] [CrossRef]
- Hassan, M.S.; Billah, K.M.M.; Hall, S.E.; Sepulveda, S.; Regis, J.E.; Marquez, C.; Cordova, S.; Whitaker, J.; Robison, T.; Keating, J.; et al. Selective Laser Sintering of High-Temperature Thermoset Polymer. J. Compos. Sci. 2022, 6, 41. [Google Scholar] [CrossRef]
- Fang, Z.C.; Wu, Z.L.; Huang, C.G.; Wu, C.W. Review on Residual Stress in Selective Laser Melting Additive Manufacturing of Alloy Parts. Opt. Laser Technol. 2020, 129, 106283. [Google Scholar] [CrossRef]
- Zhang, W.-N.; Wang, L.-Z.; Feng, Z.-X.; Chen, Y.-M. Research Progress on Selective Laser Melting (SLM) of Magnesium Alloys: A Review. Optik 2020, 207, 163842. [Google Scholar] [CrossRef]
- Bartolo, P.; Kruth, J.P.; Silva, J.; Levy, G.; Malshe, A.; Rajurkar, K.; Mitsuishi, M.; Ciurana, J.; Leu, M. Biomedical Production of Implants by Additive Electro-Chemical and Physical Processes. CIRP Ann. Manuf. Technol. 2012, 61, 635–655. [Google Scholar] [CrossRef]
- Praneeth, J.; Venkatesh, S.; Krishn, L.S. Process Parameters Influence on Mechanical Properties of AlSi10Mg by SLM. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Mohanty, S.; Gokuldoss Prashanth, K. Metallic Coatings through Additive Manufacturing: A Review. Materials 2023, 16, 2325. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, B.; Hu, Z.; Song, X.; Zhai, W.; Wei, J. Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives. Engineering 2019, 5, 702–720. [Google Scholar] [CrossRef]
- Keshavarzkermani, A.; Sadowski, M.; Ladani, L. Direct Metal Laser Melting of Inconel 718: Process Impact on Grain Formation and Orientation. J. Alloys Compd. 2018, 736, 297–305. [Google Scholar] [CrossRef]
- Aravind Shanmugasundaram, S.; Razmi, J.; Mian, M.J.; Ladani, L. Mechanical Anisotropy and Surface Roughness in Additively Manufactured Parts Fabricated by Stereolithography (SLA) Using Statistical Analysis. Materials 2020, 13, 2496. [Google Scholar] [CrossRef]
- Ladani, L. Local and Global Mechanical Behavior and Microstructure of Ti6Al4V Parts Built Using Electron Beam Melting Technology. Met. Mater. Trans. A 2015, 46, 3835–3841. [Google Scholar] [CrossRef]
- Romano, J.; Ladani, L.; Razmi, J.; Sadowski, M. Temperature Distribution and Melt Geometry in Laser and Electron-Beam Melting Processes—A Comparison among Common Materials. Addit. Manuf. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Andreotta, R.; Ladani, L.; Brindley, W. Finite Element Simulation of Laser Additive Melting and Solidification of Inconel 718 with Experimentally Tested Thermal Properties. Finite Elem. Anal. Des. 2017, 135, 36–43. [Google Scholar] [CrossRef]
- Ahsan, F.; Ladani, L. Temperature Profile, Bead Geometry, and Elemental Evaporation in Laser Powder Bed Fusion Additive Manufacturing Process. JOM 2020, 72, 429–439. [Google Scholar] [CrossRef]
- Mullen, L.; Stamp, R.C.; Brooks, W.K.; Jones, E.; Sutcliffe, C.J. Selective Laser Melting: A Regular Unit Cell Approach for the Manufacture of Porous, Titanium, Bone in-Growth Constructs, Suitable for Orthopedic Applications. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 89, 325–334. [Google Scholar] [CrossRef]
- Pimenov, D.Y.; Berti, L.F.; Pintaude, G.; Peres, G.X.; Chaurasia, Y.; Khanna, N.; Giasin, K. Influence of Selective Laser Melting Process Parameters on the Surface Integrity of Difficult-to-Cut Alloys: Comprehensive Review and Future Prospects. Int. J. Adv. Manuf. Technol. 2023, 127, 1071–1102. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Körner, C. Additive Manufacturing of Metallic Components by Selective Electron Beam Melting—A Review. Int. Mater. Rev. 2016, 61, 361–377. [Google Scholar] [CrossRef]
- Tamayo, J.A.; Riascos, M.; Vargas, C.A.; Baena, L.M. Additive Manufacturing of Ti6Al4V Alloy via Electron Beam Melting for the Development of Implants for the Biomedical Industry. Heliyon 2021, 7, e06892. [Google Scholar] [CrossRef] [PubMed]
- Murr, L.E. Metallurgy of Additive Manufacturing: Examples from Electron Beam Melting. Addit. Manuf. 2015, 5, 40–53. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Liu, Y.; Li, S.; Hao, Y. Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Adv. Eng. Mater. 2018, 20, 1700842. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Guo, X.; Kane, S.; Deng, Y.; Jung, Y.-G.; Lee, J.-H.; Zhang, J. Additive Manufacturing of Metallic Materials: A Review. J. Mater. Eng Perform 2018, 27, 1–13. [Google Scholar] [CrossRef]
- Alkhatib, S.E.; Sercombe, T.B. High Strain-Rate Response of Additively Manufactured Light Metal Alloys. Mater. Des. 2022, 217, 110664. [Google Scholar] [CrossRef]
- Matos, G.R.M. Surface Roughness of Dental Implant and Osseointegration. J. Maxillofac. Oral Surg. 2021, 20, 1–4. [Google Scholar] [CrossRef]
- Hao, L.; Harris, R. Customised Implants for Bone Replacement and Growth. In Bio-Materials and Prototyping Applications in Medicine; Bártolo, P., Bidanda, B., Eds.; Springer: Boston, MA, USA, 2008; pp. 79–107. ISBN 978-0-387-47683-4. [Google Scholar]
- ISO/ASTM 52900:2021(en); Additive Manufacturing—General Principles—Fundamentals and Vocabulary. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en (accessed on 22 April 2024).
- Ziaee, M.; Crane, N.B. Binder Jetting: A Review of Process, Materials, and Methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Sachs, E.M.; Haggerty, J.S.; Cima, M.J.; Williams, P.A. Three-Dimensional Printing Techniques. US5204055A, 20 April 1993. [Google Scholar]
- Li, M.; Du, W.; Elwany, A.; Pei, Z.; Ma, C. Metal Binder Jetting Additive Manufacturing: A Literature Review. J. Manuf. Sci. Eng. 2020, 142, 090801. [Google Scholar] [CrossRef]
- Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties. Mater. Des. 2018, 144, 98–128. [Google Scholar] [CrossRef]
- Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; Li, F.; Tan, W.; Cramer, C.L.; Nandwana, P.; Chmielus, M. Binder Jet 3D Printing—Process Parameters, Materials, Properties, Modeling, and Challenges. Prog. Mater. Sci. 2021, 119, 100707. [Google Scholar] [CrossRef]
- Chin, S.Y.; Dikshit, V.; Meera Priyadarshini, B.; Zhang, Y. Powder-Based 3D Printing for the Fabrication of Device with Micro and Mesoscale Features. Micromachines 2020, 11, 658. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wagner, G.; Williams, C.B. Effect of Bimodal Powder Mixture on Powder Packing Density and Sintered Density in Binder Jetting of Metals; University of Texas at Austin: Austin, TX, USA, 2015; Available online: https://hdl.handle.net/2152/89376 (accessed on 30 August 2024).
- Inaekyan, K.; Paserin, V.; Bailon-Poujol, I.; Brailovski, V. Binder-jetting additive manufacturing with water atomized iron powders. In Proceedings of the AMPM 2016, Boston, MA, USA, 5–7 June 2016. [Google Scholar]
- Ghoussoub, J.N.; Tang, Y.T.; Panwisawas, C.; Németh, A.; Reed, R.C. On the Influence of Alloy Chemistry and Processing Conditions on Additive Manufacturability of Ni-Based Superalloys. In Superalloys 2020; Tin, S., Hardy, M., Clews, J., Cormier, J., Feng, Q., Marcin, J., O’Brien, C., Suzuki, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 153–162. [Google Scholar]
- Miyanaji, H.; Zhang, S.; Lassell, A.; Zandinejad, A.; Yang, L. Optimal Process Parameters for 3D Printing of Porcelain Structures. Procedia Manuf. 2016, 5, 870–887. [Google Scholar] [CrossRef]
- Do, T.; Bauder, T.J.; Suen, H.; Rego, K.; Yeom, J.; Kwon, P. Additively Manufactured Full-Density Stainless Steel 316L with Binder Jet Printing. In Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference, College Station, TX, USA, 18–22 June 2018; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2018. [Google Scholar]
- Sun, L.; Kim, Y.H.; Kim, D.; Kwon, P. Densification and Properties of 420 Stainless Steel Produced by Three-Dimensional Printing With Addition of Si3N4 Powder. J. Manuf. Sci. Eng. 2009, 131, 061001. [Google Scholar] [CrossRef]
- Kumar, A.; Bai, Y.; Eklund, A.; Williams, C.B. Effects of Hot Isostatic Pressing on Copper Parts Fabricated via Binder Jetting. Procedia Manuf. 2017, 10, 935–944. [Google Scholar] [CrossRef]
- Sa’ude, N.; Ibrahim, M.; Ismail, N.A.; Ibrahim, R. Freeform Fabrication of Titanium Based Powder by Inkjet 3D Printer. In Proceedings of the International Conference on Leading Edge Manufacturing in 21st Century, Fukuoka, Japan, 8 September 2011. [Google Scholar]
- Nandwana, P.; Elliott, A.; Siddel, D.; Merriman, A.; Peter, W.; Babu, S. Powder Bed Binder Jet 3D Printing of Inconel 718: Densification, Microstructural Evolution and Challenges. Curr. Opin. Solid State Mater. Sci. 2017, 21, 207–218. [Google Scholar] [CrossRef]
- Allen, S.M.; Sachs, E.M. Three-Dimensional Printing of Metal Parts for Tooling and Other Applications. Met. Mater. 2000, 6, 589–594. [Google Scholar] [CrossRef]
- Bailey, A.C.; Merriman, A.; Elliot, A.; Basti, M.M. Preliminary Testing of Nanoparticle Effectiveness in Binder Jetting Applications. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8 August 2016. [Google Scholar]
- Zhou, Z.; Buchanan, F.; Mitchell, C.; Dunne, N. Printability of Calcium Phosphate: Calcium Sulfate Powders for the Application of Tissue Engineered Bone Scaffolds Using the 3D Printing Technique. Mater. Sci. Eng. C 2014, 38, 1–10. [Google Scholar] [CrossRef]
- Xiong, Y.; Qian, C.; Sun, J. Fabrication of Porous Titanium Implants by Three-Dimensional Printing and Sintering at Different Temperatures. Dent. Mater. J. 2012, 31, 815–820. [Google Scholar] [CrossRef]
- Sheydaeian, E.; Fishman, Z.; Vlasea, M.; Toyserkani, E. On the Effect of throughout Layer Thickness Variation on Properties of Additively Manufactured Cellular Titanium Structures. Addit. Manuf. 2017, 18, 40–47. [Google Scholar] [CrossRef]
- Center for Devices and Radiological Health. Technical Considerations for Additive Manufactured Medical Devices Guidance; FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Learn if a Medical Device Has Been Cleared by FDA for Marketing. Available online: https://www.fda.gov/medical-devices/consumers-medical-devices/learn-if-medical-device-has-been-cleared-fda-marketing (accessed on 30 August 2024).
- Morrison, R.J.; Kashlan, K.N.; Flanangan, C.L.; Wright, J.K.; Green, G.E.; Hollister, S.J.; Weatherwax, K.J. Regulatory Considerations in the Design and Manufacturing of Implantable 3D-Printed Medical Devices. Clin. Transl. Sci. 2015, 8, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Classify Your Medical Device. Available online: https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device (accessed on 19 October 2023).
- Investigational Device Exemption (IDE). Available online: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/investigational-device-exemption-ide (accessed on 19 October 2023).
- 21 CFR Part 820—Quality System Regulation. Available online: https://www.ecfr.gov/current/title-21/part-820 (accessed on 19 October 2023).
- Lambert, B.; Martin, J. Chapter III.1.2—Sterilization of Implants and Devices. In Biomaterials Science, 3rd ed.; Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 1339–1353. ISBN 978-0-12-374626-9. [Google Scholar]
- Talkington, K. FDA’s Regulatory Framework for 3D Printing of Medical Devices at the Point of Care Needs More Clarity. Available online: https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2022/07/fdas-regulatory-framework-for-3d-printing-of-medical-devices-needs-more-clarity (accessed on 30 August 2024).
- International Organization for Standardization. Additive Manufacturing—Process Characteristics and Performance Practice for Metal Powder Bed Fusion Process to Meet Critical Applications; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- International Organization for Standardization. Additive Manufacturing of Metals: Finished Part Properties Orientation and Location Dependence of Mechanical Properties for Metal Powder Bed Fusion; International Organization for Standardization: Geneva, Switzerland, 2022. [Google Scholar]
- International Organization for Standardization. Additive Manufacturing for Metals—Non-Destructive Testing and Evaluation Imperfections Classification in PBF Parts, International Organization for Standardization: Geneva, Switzerland, 2023.
- International Organization for Standardization. Additive Manufacturing of Metals—Environment, Health and Safety, Part 1—Safety Requirements for PBF-LB Machines; International Organization for Standardization: Geneva, Switzerland, 2023. [Google Scholar]
- International Organization for Standardization. Additive Manufacturing of Metals: Non-Destructive Testing and Evaluation, Defect Detection in Parts; International Organization for Standardization: Geneva, Switzerland, 2023. [Google Scholar]
- International Organization for Standardization. Additive Manufacturing: General Principles, Main Characteristics and Corresponding Test Methods; International Organization for Standardization: Geneva, Switzerland, 2024. [Google Scholar]
- International Organization for Standardization. Additive Manufacturing for Medical: General Principles, Additive Manufacturing of Non-Active Implants; International Organization for Standardization: Geneva, Switzerland, 2024. [Google Scholar]
- International Organization for Standardization. Additive Manufacturing: Design, Part 3: PBF-EB of Metallic Materials; International Organization for Standardization: Geneva, Switzerland, 2023. [Google Scholar]
- Martinez-Marquez, D.; Jokymaityte, M.; Mirnajafizadeh, A.; Carty, C.P.; Lloyd, D.; Stewart, R.A. Development of 18 Quality Control Gates for Additive Manufacturing of Error Free Patient-Specific Implants. Materials 2019, 12, 3110. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Bhandari, R.; Pinca-Bretotean, C. A Systematic Overview on Fabrication Aspects and Methods of Aluminum Metal Matrix Composites. Mater. Today Proc. 2021, 45, 4133–4138. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.; Zhang, J.; Tang, H.; Wang, H. Additive Manufacturing of Magnesium Matrix Composites: Comprehensive Review of Recent Progress and Research Perspectives. J. Magnes. Alloys 2023, 11, 425–461. [Google Scholar] [CrossRef]
Material | ) | Modulus (GPa) | Compressive Yield Strength (MPa) | % Elongation | |
---|---|---|---|---|---|
Cortical bone (Longitudinal Direction) | 1.8–2.1 [82] | 17.90 ± 3.90 [102] 18.20 ± 1.88 [103] | 115.06 ± 16.36 [103,104] | 2–6 [104] | 1.07–2.10 [82] |
Cortical bone (Transverse Direction) | 1.8–2.1 [82] | 10.10 ± 2.40 [102] 5.65 ± 1.61 [105] 1 6.49 ± 3.22 [105] 2 | 41.8 ± 19.4 [105] 1 44.1 ± 21.1 [105] 2 | 2–6 [104] | 1.07–2.10 [82] |
Mg alloys | 1.84 [106] | 44.2 [106] | 172 [94] | 15.9 [107] | 2 [106] |
Co-Cr Alloy | Type of Fixation | Reference |
---|---|---|
Co–28Cr–6Mo | Permanent | [121,122,130,131,132,133,134,135,136,137] |
Co–20Cr–15W–10Ni | Permanent or Short-term | [122,130,131,132,138,139,140,141,142] |
Co–35Ni–20Cr–10Mo | Permanent | [122,130,131,132,143] |
Co–Cr–Ni–Mo–Fe | Permanent | [122,130,131,132,144,145] |
Material | Application | References |
---|---|---|
Commercially Pure-Ti. | - Dental Implants - Tooth roots - Mandibular reinforcement plates - Internal fixation plates- Spinal Implants | [31,165,169,170] |
Ti-6Al-4V | - Joint Replacement - Spinal spacer - Dental Implants | [31,165,169,170,171] |
Ti-6Al-7Nb | - Joint Replacement - Spinal spacer - Dental Implants | [165,169,170] |
Ti-15Mo-5Zr-3Al | Joint replacement | [165] |
Ti-6Al-2Nb-1Ta-0.8Mo | Joint replacement | [165,170] |
Property | ASTM Grade 1 [178] | ASTM Grade 2 [178] | ASTM Grade 3 [178] | ASTM Grade 4 [178] | Ti-6Al-4V [165,178,179] | Ti-6Al-7Nb [165,178] |
---|---|---|---|---|---|---|
Chemical Composition | 0.20% Iron 0.18% Oxygen | 0.30% Iron 0.25%Oxygen | 0.30% Iron 0.35% Oxygen | 0.50% Iron 0.40% Oxygen | ||
Elastic Modulus (GPa) | 103–107 | 103–107 | 103–107 | 103–107 | 114–120 | 105–120 |
Yield Strength (MPa) | 170 | 275 | 380 | 483 | 795 | 817 |
Ultimate Tensile Strength (MPa) | 240 | 345 | 450 | 550 | 860 | 933 |
Process Parameter | Description of FDA Requirements for Approval |
---|---|
Design control | Necessary to incorporate verification and design validation steps to control design variants that arise due to inherit customization of print process [255] |
Raw materials | Follow FDA Quality System (QS) Regulation/Medical Device Good Manufacturing Practices [258] Recycling of raw material poses a unique challenge for 3D printed devices; need to consider how to verify material is still safe and effective after recycling. |
Technical considerations | Print Parameters (scan speed, laser beam energy density, etc.) significantly impact final device characteristics. FDA requires documentation outlining the print process parameters used to make final device |
Post processing | Standard guidance for post processing quality assurance has not yet been published. Need to provide sufficient data to FDA that post processing has not altered the safety and efficacy profile of the final device design |
Cleaning and finishing | FDA has not explicitly outlined the requirements for validating that cleaning and finishing of the print has not altered the mechanical or structure properties. It is expected that the FDA will still require some form of documentation verifying cleaning/finishing did not alter device properties; manufacturer discretion on how that is shown |
Sterilization | FDA applies the sterilization criteria (ISO 22441:2022) [259] |
Biocompatibility | FDA enforces ISO10993 standards for evaluating biocompatibility for Class III 3D printed devices |
Standard Code | Standard | Status/Date | References |
---|---|---|---|
ISO/ASTM 52900:2021 | Additive manufacturing: General Principals: Fundamentals and vocabulary | Published/2021 | [35] |
ISO/ASTM 52904:2019 | Additive manufacturing: Process characteristics and performance Practice for metal powder bed fusion process to meet critical applications | Published (to be revised)/2019 | [261] |
ISO/ASTM 52909:2022 | Additive manufacturing of metals: Finished part properties Orientation and location dependence of mechanical properties for metal powder bed fusion | Published (to be revised)/2022 | [262] |
ISO/ASTM DIS 52948 | Additive manufacturing for metals: Non-destructive testing and evaluation imperfections classification in PBF parts | Under Development | [263] |
ISO/ASTM DIS 52938-1 | Additive manufacturing of metals: Environment, health and safety, Part 1: Safety requirements for PBF-LB machines | Under Development | [264] |
ISO/ASTM TR 52905:2023 | Additive manufacturing of metals: Non-destructive testing and evaluation, Defect detection in parts | Published/2023 | [265] |
ISO/ASTM DIS 52927 | Additive manufacturing: General principles, Main characteristics and corresponding test methods | Under Development | [266] |
ISO/CD 5092 | Additive manufacturing for medical: General principles, Additive manufacturing of non-active implants | Under Development | [267] |
ISO/ASTM 52911-3:2023 | Additive manufacturing: Design, Part 3: PBF-EB of metallic materials | Published/2023 | [268] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladani, L.; Palmieri, M. Review of the Use of Metals in Biomedical Applications: Biocompatibility, Additive Manufacturing Technologies, and Standards and Regulations. Metals 2024, 14, 1039. https://doi.org/10.3390/met14091039
Ladani L, Palmieri M. Review of the Use of Metals in Biomedical Applications: Biocompatibility, Additive Manufacturing Technologies, and Standards and Regulations. Metals. 2024; 14(9):1039. https://doi.org/10.3390/met14091039
Chicago/Turabian StyleLadani, Leila, and Michael Palmieri. 2024. "Review of the Use of Metals in Biomedical Applications: Biocompatibility, Additive Manufacturing Technologies, and Standards and Regulations" Metals 14, no. 9: 1039. https://doi.org/10.3390/met14091039
APA StyleLadani, L., & Palmieri, M. (2024). Review of the Use of Metals in Biomedical Applications: Biocompatibility, Additive Manufacturing Technologies, and Standards and Regulations. Metals, 14(9), 1039. https://doi.org/10.3390/met14091039