On the Relationship between Thermomechanical Processing Parameters and Recrystallization Texture in AA1100 Aluminum Alloy
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Materials and Sample Preparation
2.2. EBSD Measurements
3. Results and Discussion
3.1. Effects of Thermomechanical Processing Conditions on Recrystallization
3.2. The Kinetic Behavior of the Texture Components
3.3. Relationship between Recrystallization and Texture
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jensen, D.J.; Hansen, N. Deformation and recrystallization textures in commercially pure aluminum. Metall. Trans. A 1986, 17, 253–259. [Google Scholar]
- Hollinshead, P.A.; Sheppard, T. Development of Rolling Textures in Aluminum Alloy 3004 Subjected to Varying Hot-Rolling Deformation. Metall. Trans. A 1989, 20, 1495–1507. [Google Scholar] [CrossRef]
- Bate, P.; Oscarsson, A. Deformation banding and texture in hot rolled Al-1.0Mn-1.2Mg alloy. Mater. Sci. Technol. 1990, 6, 520–527. [Google Scholar] [CrossRef]
- Daaland, O.; Maurice, C.; Driver, J.; Raynaud, G.M.; Lequeu, P.; Strid, J.; Nes, E. Evolution of microstructure and texture during hot rolling and annealing of aluminium alloy 3004. In Proceedings of the 3rd International Conference on Aluminium Alloys Their Physical and Mechanical Properties (ICAA3), Trondheim, Norway, 22–26 June 1992. [Google Scholar]
- Engler, O.; Wagner, P.; Ponge, D. Strain rate sensitivity of flow stress and its effect on hot rolling texture development. Scr. Metall. Mater. 1993, 28, 1317–1322. [Google Scholar] [CrossRef]
- Panchanadeeswaran, S.; Field, D.P. Texture evolution during plane strain deformation of aluminum. Acta Metall. Mater. 1995, 43, 1683–1692. [Google Scholar] [CrossRef]
- Vatne, H.E.; Shahani, R.; Nes, E. Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy. Acta Mater. 1996, 44, 4447–4462. [Google Scholar] [CrossRef]
- Maurice, C.; Driver, J.H. Hot rolling textures of f.c.c. metals—Part I. Experimental results on Al single and polycrystals. Acta Mater. 1997, 45, 4627–4638. [Google Scholar] [CrossRef]
- ADuckham, R.D.; Knutsen, O. Engler, Influence of deformation variables on the formation of copper-type shear bands in Al–1Mg. Acta Mater. 2001, 49, 2739–2749. [Google Scholar] [CrossRef]
- Bate, P.S.; Huang, Y.; Humphreys, F.J. Development of the “brass” texture component during the hot deformation of Al–6Cu–0.4Zr. Acta Mater. 2004, 52, 4281–4289. [Google Scholar] [CrossRef]
- Bacroix, B.; Brun, O.; Chauveau, T. The Influence of Temperature on the Rolling Textures of Al Alloys in the Absence of Recrystallization. Textures Microstruct. 1991, 14–18, 787–792. [Google Scholar] [CrossRef]
- Samajdar, I.; Ratchev, P.; Verlinden, B.; Aernoudt, E. Hot working of AA1050-relating the microstructural and textural developments. Acta Mater. 2001, 49, 1759–1769. [Google Scholar] [CrossRef]
- Aryshenskii, E.; Hirsch, J.; Konovalov, S.; Aryshenskii, V.; Drits, A. Influence of Mg Content on Texture Development during Hot Plain-Strain Deformation of Aluminum Alloys. Metals 2021, 11, 865. [Google Scholar] [CrossRef]
- Le Hazif, R.; Dorizzi, D.; Poirier, J.P. Glissement {110}(110) dans les m6taux de structure cubique faces centr6es. Acta Metall. 1973, 21, 903–912. [Google Scholar] [CrossRef]
- Le Hazif, R.; Poirier, J.P. Cross-slip on {110} planes in aluminum single crystals compressed along (100) axis. Acta Metall. 1975, 23, 865–871. [Google Scholar] [CrossRef]
- Bacroix, B.; Jonas, J.J. The influence of non-octahedral slip on texture development in FCC metals. Textures Microstruct. 1988, 8, 267–311. [Google Scholar] [CrossRef]
- Bacroix, B.; Jonas, J.J. Proc. ICOTOM 8; Kallend, J.S., Gottstein, G., Eds.; TMS: Warrendale, PA, USA, 1988. [Google Scholar]
- Hirsch, J.; Luecke, K. Overview no. 76, Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals—II. Simulation and interpretation of experiments on the basis of Taylor-type theories. Acta Metall. 1988, 36, 2883–2904. [Google Scholar] [CrossRef]
- Maurice, C.L.; Driver, J.H.; Tóth, L.S. Modelling High Temperature Rolling Textures of FCC Metals. Textures Microstruct. 1992, 19, 211–227. [Google Scholar] [CrossRef]
- Liu, W.C.; Morris, J.G. Effect of hot and cold deformation on the β fiber rolling texture in continuous cast AA 5052 aluminum alloy. Scr. Mater. 2005, 52, 1317–1321. [Google Scholar] [CrossRef]
- Alvi, M.H.; Cheong, S.W.; Suni, J.P.; Weiland, H.; Rollett, A.D. Cube texture in hot-rolled aluminum alloy 1050 (AA1050)—Nucleation and growth behavior. Acta Mater. 2008, 56, 3098–3108. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Ren, L.; Liu, Q.; Cao, Y.; Huang, G. Microstructure and Texture of an Aluminum Plate Produced by Multipass Cold Rolling and Graded Annealing Process. Metals 2022, 12, 260. [Google Scholar] [CrossRef]
- Crumbach, M.; Gottstein, G. Analysis of the activity of {110}<110> slip in AA3103 by inverse modeling. Mater. Sci. Eng. A 2004, 387–389, 282–287. [Google Scholar]
- Maurice, C.; Driver, J.H. High temperature plane strain compression of cube oriented aluminium crystals. Acta Metall. Mater. 1993, 41, 1653–1664. [Google Scholar] [CrossRef]
- Gatti, J.R.; Bhattacharjee, P.P. Effect of Prior Recovery Treatment on the Evolution of Cube Texture During Annealing of Severely Warm-Rolled Al-2.5 wt pctMg Alloy. Metall. Mater. Trans. A 2015, 46, 4966–4977. [Google Scholar] [CrossRef]
- Sheppard, T.; Duan, X. Modelling of static recrystallisation by the combination of empirical models with the finite element method. J. Mater. Sci. 2003, 38, 1747–1754. [Google Scholar] [CrossRef]
- Gutierrez, I.; Castro, F.R.; Urcola, J.J.; Fuentes, M. Static recrystallization kinetics of commercial purity aluminium after hot deformation within the steady state regime. Mater. Sci. Eng. A 1988, 102, 77–84. [Google Scholar] [CrossRef]
- Sellars, C.M.; McTegart, W.J. On the mechanism of hot deformation. Acta Metall. 1966, 14, 1136–1138. [Google Scholar] [CrossRef]
- McQueen, H.J.; Ryan, N.D. Constitutive analysis in hot working. Mater. Sci. Eng. A 2002, 322, 43–63. [Google Scholar] [CrossRef]
- Wells, M.A.; Samarasekera, I.V.; Brimacombe, J.K.; Hawbolt, E.B.; Lloyd, D.J. Modeling the microstructural changes during hot tandem rolling of AA5XXX aluminum alloys: Part I. Microstructural evolution. Metall. Mater. Trans. B 1998, 29, 611–620. [Google Scholar] [CrossRef]
- Sidor, J.J. Effect of Hot Band on Texture Evolution and Plastic Anisotropy in Aluminium Alloys. Metals 2021, 11, 1310. [Google Scholar] [CrossRef]
- Cantergiani, E.; Riedel, M.; Karhausen, K.F.; Roters, F.; Quadfasel, A.; Falkinger, G.; Engler, O.; Rabindran, R. Simulations of Texture Evolution in the Near-Surface Region During Aluminum Rolling. Metall. Mater. Trans. A 2024, 55, 3327–3350. [Google Scholar] [CrossRef]
- Cantergiani, E.; Weißensteiner, I.; Grasserbauer, J.; Falkinger, G.; Pogatscher, S.; Roters, F. Influence of Hot Band Annealing on Cold-Rolled Microstructure and Recrystallization in AA 6016. Metall. Mater. Trans. A 2023, 54, 75–96. [Google Scholar] [CrossRef]
- Cho, J.-H.; Lee, G.-Y.; Lee, S.-H. Dynamic Shear Texture Evolution during the Symmetric and Differential Speed Rolling of Al-Si-Mg Alloys Fabricated by Twin Roll Casting. Materials 2024, 17, 179. [Google Scholar] [CrossRef]
- Engler, O. Modelling of Microstructure and Texture and the Resulting Properties during the Thermo-Mechanical Processing of Aluminium Sheets. Mater. Sci. Forum. 2006, 519–521, 1563–1568. [Google Scholar] [CrossRef]
- Sidor, J.J.; Petrov, R.H.; Kestens, L.A.I. Texture Control in Aluminum Sheets by Conventional and Asymmetric Rolling. In Comprehensive Materials Processing; Button, S.T., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 3, pp. 447–498. [Google Scholar]
- Hirsch, J. Texture Evolution and Earing in Aluminium Can Sheet. Mater. Sci. Forum. 2005, 495–497, 1565–1572. [Google Scholar]
- Lobanov, M.L.; Zorina, M.A.; Reznik, P.L.; Redikultsev, A.A.; Pastukhov, V.I.; Karabanalov, M.S. Crystallography of Recrystallization in Al and Cu with Fiber Texture. Metals 2023, 13, 1639. [Google Scholar] [CrossRef]
- Kraner, J.; Cvahte, P.; Šuštarič, P.; Šuštar, T.; Donik, Č.; Paulin, I.; Kim, S.K.; Kim, K.I. Effects of Variated Final Temperature and Workpiece Thickness for Hot Rolling of Aluminum Alloy EN AW-8011. Metals 2023, 13, 1301. [Google Scholar] [CrossRef]
- Wu, J.; Djavanroodi, F.; Gode, G.; Ebrahimi, M.; Attarilar, S. Microstructure evolution, texture development, and mechanical properties of hot-rolled 5052 aluminum alloy followed by annealing. Mater. Res. Express 2022, 9, 056516. [Google Scholar] [CrossRef]
Alloy | Si | Fe | Cu | Mn | Mg | Cr | Ti | Al |
---|---|---|---|---|---|---|---|---|
AA1100 | 0.17 | 0.38 | 0.09 | 0.004 | 0.002 | 0.001 | 0.03 | Balance |
Name | TMPs | Annealing Time t (s) | ||||||
---|---|---|---|---|---|---|---|---|
T (°C) | (s−1) | ε (%) | ||||||
T275-1 (1) | 275 | 5 | 60 | 0 | 1800 | 4800 | 10,800 | 28,800 |
T275-2 (2) | 5 | 85 | ||||||
T275-3 (3) | 90 | 60 | ||||||
T275-4 (4) | 90 | 85 | ||||||
T300-1 (5) | 300 | 5 | 60 | 0 | 300 | 900 | 3000 | 9000 |
T300-2 (6) | 5 | 85 | ||||||
T300-3 (7) | 90 | 60 | ||||||
T300-4 (8) | 90 | 85 | ||||||
T350-1 (9) | 350 | 5 | 60 | 0 | 30 | 150 | 300 | 900 |
T350-2 (10) | 5 | 85 | ||||||
T350-3 (11) | 90 | 60 | ||||||
T350-4 (12) | 90 | 85 |
Texture Component | Miller Index |
---|---|
C | {112}<111> |
S | {123}<634> |
B | {110}<112> |
Cube | {001}<100> |
RC20°RD | {013}<001> |
Goss | {110}<001> |
(°C) | (s−1) | (%) | Z (s−1) | nR | t0.5 (s) | X0 (%) |
---|---|---|---|---|---|---|
275 | 5 | 60 | 5.75 × 1015 | 0.69 | 5894 | 0 |
85 | 0.39 | 2806 | 0.03 | |||
90 | 60 | 1.04 × 1017 | 0.36 | 1685 | 0.05 | |
85 | 0.48 | 6238 | 0.01 | |||
300 | 5 | 60 | 1.27 × 1015 | 0.32 | 2683 | 0.05 |
85 | 0.15 | 584 | 0.22 | |||
90 | 60 | 2.28 × 1016 | 0.23 | 2336 | 0.10 | |
85 | 0.41 | 1395 | 0.04 | |||
350 | 5 | 60 | 8.85 × 1013 | 0.68 | 500 | 0 |
85 | 0.80 | 108 | 0 | |||
90 | 60 | 1.59 × 1015 | 0.98 | 136 | 0 | |
85 | 1.03 | 169 | 0 |
Name | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | n | - | 2.20 | 0.73 | 3.15 | 1.49 | 3.00 | 1.71 | - | 7.01 | 0.80 | 0.85 | 1.00 |
t0.5 (s) | - | 1919 | 1513 | 7070 | 458 | 693 | 541 | - | 221 | 39 | 28 | 34 | |
S | n | 0.95 | 2.02 | 0.77 | 2.07 | 2.77 | 3.00 | 1.04 | 3.00 | 4.29 | 1.06 | 1.20 | 1.46 |
t0.5 (s) | 3910 | 2831 | 1200 | 4524 | 745 | 610 | 513 | 900 | 200 | 39 | 68 | 56 | |
B | n | 0.61 | 1.95 | 0.34 | 2.20 | 1.20 | 1.52 | 1.43 | 1.60 | 1.65 | 0.87 | 3.50 | 2.00 |
t0.5 (s) | 2355 | 3470 | 107 | 6187 | 418 | 316 | 659 | 936 | 131 | 37 | 108 | 62 | |
Cb | n | 1.09 | 0.87 | 1.82 | 1.28 | 1.16 | 2.50 | - | 2.50 | 2.60 | 1.18 | 2.06 | 1.88 |
t0.5 (s) | 6000 | 4348 | 2613 | 3920 | 890 | 554 | - | 742 | 218 | 57 | 72 | 86 | |
RC | n | - | - | - | 2.25 | 2.00 | 2.37 | 1.21 | - | 4.00 | 1.74 | 2.37 | 2.40 |
t0.5 (s) | - | - | - | 4335 | 398 | 900 | 780 | - | 190 | 50 | 76 | 65 | |
G | n | - | - | - | 1.59 | - | - | 0.43 | 2.14 | - | - | 3.75 | 2.68 |
t0.5 (s) | - | - | - | 12,300 | - | - | 101 | 3922 | - | - | 550 | 255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.-L.; Hsiao, S.-C.; Chang, C.-I.; Tseng, T.-Y.; Chen, P.-J.; Kuo, J.-C. On the Relationship between Thermomechanical Processing Parameters and Recrystallization Texture in AA1100 Aluminum Alloy. Metals 2024, 14, 962. https://doi.org/10.3390/met14090962
Yang H-L, Hsiao S-C, Chang C-I, Tseng T-Y, Chen P-J, Kuo J-C. On the Relationship between Thermomechanical Processing Parameters and Recrystallization Texture in AA1100 Aluminum Alloy. Metals. 2024; 14(9):962. https://doi.org/10.3390/met14090962
Chicago/Turabian StyleYang, Hsin-Lun, Shih-Chieh Hsiao, Chih-I Chang, Tien-Yu Tseng, Po-Jen Chen, and Jui-Chao Kuo. 2024. "On the Relationship between Thermomechanical Processing Parameters and Recrystallization Texture in AA1100 Aluminum Alloy" Metals 14, no. 9: 962. https://doi.org/10.3390/met14090962
APA StyleYang, H. -L., Hsiao, S. -C., Chang, C. -I., Tseng, T. -Y., Chen, P. -J., & Kuo, J. -C. (2024). On the Relationship between Thermomechanical Processing Parameters and Recrystallization Texture in AA1100 Aluminum Alloy. Metals, 14(9), 962. https://doi.org/10.3390/met14090962