Tracing the Origin of Oxide Inclusions in Vacuum Arc Remelted Steel Ingots Using Trace Element Profiles and Strontium Isotope Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Specimens
2.2. Potential Source Materials
2.3. Sample Preparation
2.4. SEM/EDX Analysis
2.5. ICP-MS Analysis
2.5.1. Solution-Based ICP-MS
2.5.2. Laser Ablation ICP-MS
3. Results
3.1. Morphology and Main Constituents
3.2. REE Fingerprinting
3.3. Sr Isotope Ratios
4. Discussion
4.1. Morphology and Main Constituents
4.2. REE Fingerprinting
4.3. Sr Isotope Ratios
4.4. Hypothesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornton, P.A. The influence of nonmetallic inclusions on the mechanical properties of steel: A review. J. Mater. Sci. 1971, 6, 347–356. [Google Scholar] [CrossRef]
- Park, J.H.; Kang, Y. Inclusions in Stainless Steels−A Review. Steel Res. Int. 2017, 88, 1700130. [Google Scholar] [CrossRef]
- Zhang, L.; Thomas, B.G. State of the art in the control of inclusions during steel ingot casting. Metall. Mater. Trans. B 2006, 37, 733–761. [Google Scholar] [CrossRef]
- Michelic, S.K.; Bernhard, C.; Wieser, G.; Lederhaas, B. Critical Evaluation of Prospects and Limitations of Steel Cleanness Characterisation using automated SEM/EDS Analysis. In Proceedings of the 8th International Conference on Clean Steel, Budapest, Hungary, 14–16 May 2012; pp. 1–11. [Google Scholar]
- Lund, T.B.; Törresvoll, K. Quantification of large inclusions in bearing steels. Astm Spec. Tech. Publ. 1998, 1327, 27–38. [Google Scholar]
- Li, J.; Xu, X.-W.; Ren, N.; Xia, M.-X.; Li, J.-G. A review on prediction of casting defects in steel ingots: From macrosegregation to multi-defect model. J. Iron Steel Res. Int. 2022, 29, 1901–1914. [Google Scholar] [CrossRef]
- Cheng, J.; Eriksson, R.; Jönsson, P. Determination of macroinclusions during clean steel production. Ironmak. Steelmak. 2003, 30, 66–72. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Y.; Li, S.; Zhang, L.; Zuo, X.; Lekakh, S.N.; Peaslee, K. Detection of Non-metallic Inclusions in Steel Continuous Casting Billets. Metall. Mater. Trans. B 2014, 45, 1291–1303. [Google Scholar] [CrossRef]
- Zhang, L.; Thomas, B.G. State of the art in evaluation and control of steel cleanliness. ISIJ Int. 2003, 43, 271–291. [Google Scholar] [CrossRef]
- Zhang, L.-F. Indirect Methods of Detecting and Evaluating Inclusions in Steel—A Review. J. Iron Steel Res. Int. 2006, 13, 1–8. [Google Scholar] [CrossRef]
- Cui, H.-Z.; Chen, W.-Q. Effect of Boron on Morphology of Inclusions in Tire Cord Steel. J. Iron Steel Res. Int. 2012, 19, 22–27. [Google Scholar] [CrossRef]
- Toro, A.; Zhou, F.; Wu, M.H.; Van Geertruyden, W.; Misiolek, W.Z. Characterization of Non-Metallic Inclusions in Superelastic NiTi Tubes. J. Mater. Eng. Perform. 2009, 18, 448–458. [Google Scholar] [CrossRef]
- Singh, V.; Khan, R.; Bandi, B.; Roy, G.G.; Srirangam, P. Effect of non-metallic inclusions (NMI) on crack formation in forged steel. Mater. Today Proc. 2021, 41, 1096–1102. [Google Scholar] [CrossRef]
- Moghaddam, S.M.; Sadeghi, F.; Paulson, K.; Weinzapfel, N.; Correns, M.; Dinkel, M. A 3D numerical and experimental investigation of microstructural alterations around non-metallic inclusions in bearing steel. Int. J. Fatigue 2016, 88, 29–41. [Google Scholar] [CrossRef]
- Gusenbauer, C.; Reiter, M.; Kastner, J.; Kloesch, G. Detection of Non-Metallic Inclusions in Steel by X-ray Computed Tomography and After Fatigue Testing. In Proceedings of the 11 th European Conference on Nondestructive Testing, Prague, Czech Republic, 6–10 October 2014; pp. 1–10. [Google Scholar]
- Ramesh Babu, S.; Michelic, S.K. Analysis of Non-Metallic Inclusions by Means of Chemical and Electrolytic Extraction—A Review. Materials 2022, 15, 3367. [Google Scholar] [CrossRef]
- Karasev, A.V.; Inoue, R.; Suito, H. Quantitative Analysis of Total and Insoluble Elements and Inclusion Composition in Metal by Laser Ablation ICP-MS Method. ISIJ Int. 2001, 41, 757–765. [Google Scholar] [CrossRef]
- Karasev, A.V.; Suito, H.; Inoue, R. Application of Laser Ablation ICP Mass Spectrometry for Analysis of Oxide Particles on Cross Section of Alloys and Steels. ISIJ Int. 2011, 51, 2042–2049. [Google Scholar] [CrossRef]
- Dubuisson, C.; Cox, A.G.; McLeod, C.W.; Whiteside, I.; Jowitt, R.; Falk, H. Characterisation of Inclusions in Clean Steels via Laser Ablation-ICP Mass Spectrometry. ISIJ Int. 2004, 44, 1859–1866. [Google Scholar] [CrossRef]
- Thiele, K.; Truschner, C.; Walkner, C.; Meisel, T.C.; Ilie, S.; Rössler, R.; Michelic, S.K. Investigating the Origin of Non-Metallic Inclusions in Ti-Stabilized ULC Steels Using Different Tracing Techniques. Metals 2024, 14, 103. [Google Scholar] [CrossRef]
- Capo, R.C.; Stewart, B.W.; Chadwick, O.A. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 1998, 82, 197–225. [Google Scholar] [CrossRef]
- Tommasini, S.; Marchionni, S.; Tescione, I.; Casalini, M.; Braschi, E.; Avanzinelli, R.; Conticelli, S. Strontium Isotopes in Biological Material: A Key Tool for the Geographic Traceability of Foods and Humans Beings. In Behaviour of Strontium in Plants and the Environment; Gupta, D.K., Walther, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 145–166. [Google Scholar]
- Bartelink, E.J.; Chesson, L.A. Recent Applications of Isotope Analysis to Forensic Anthropology. Forensic Sci. Res. 2019, 4, 29–44. [Google Scholar] [CrossRef]
- Zhang, L.; Rietow, B.; Thomas, B.G.; Eakin, K. Large Inclusions in Plain-carbon Steel Ingots Cast by Bottom Teeming. ISIJ Int. 2006, 46, 670–679. [Google Scholar] [CrossRef]
- Wegst, C.W. Stahlschlüssel; Verlag Stahlschlüssel Wegst GmbH: Stuttgart, Germany, 2022. [Google Scholar]
- Bokhari, S.N.H.; Meisel, T.C. Method Development and Optimisation of Sodium Peroxide Sintering for Geological Samples. Geostand. Geoanalytical Res. 2017, 41, 181–195. [Google Scholar] [CrossRef]
- Irrgeher, J.; Prohaska, T.; Sturgeon, R.E.; Mester, Z.; Yang, L. Determination of strontium isotope amount ratios in biological tissues using MC-ICPMS. Anal. Methods 2013, 5, 1687–1694. [Google Scholar] [CrossRef]
- Webb, P.; Potts, P.; Thompson, M.; Gowing, C.J.; Wilson, S. GeoPT45—An international proficiency test for analytical geochemistry laboratories—Report on round 45 (Silicified siltstone, GONV-1)/July 2019. Int. Assoc. Geoanalysts Unpubl. Rep. 2019. Available online: https://www.geoanalyst.org/wp-content/uploads/2021/01/GeoPT45-Full-Report.pdf (accessed on 9 January 2025).
- Wagner, S.; Santner, J.; Irrgeher, J.; Puschenreiter, M.; Happel, S.; Prohaska, T. Selective diffusive gradients in thin films (DGT) for the simultaneous assessment of labile Sr and Pb concentrations and isotope ratios in soils. Anal. Chem. 2022, 94, 6338–6346. [Google Scholar] [CrossRef] [PubMed]
- Horsky, M.; Irrgeher, J.; Prohaska, T. Evaluation strategies and uncertainty calculation of isotope amount ratios measured by MC ICP-MS on the example of Sr. Anal. Bioanal. Chem. 2016, 408, 351–367. [Google Scholar] [CrossRef]
- Russell, W.; Papanastassiou, D.; Tombrello, T. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 1978, 42, 1075–1090. [Google Scholar] [CrossRef]
- Irrgeher, J.; Galler, P.; Prohaska, T. 87Sr/86Sr isotope ratio measurements by laser ablation multicollector inductively coupled plasma mass spectrometry: Reconsidering matrix interferences in bioapatites and biogenic carbonates. Spectrochim. Acta Part B At. Spectrosc. 2016, 125, 31–42. [Google Scholar] [CrossRef]
- Henderson, P. Rare Earth Element Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Rétif, J.; Zalouk-Vergnoux, A.; Briant, N.; Poirier, L. From geochemistry to ecotoxicology of rare earth elements in aquatic environments: Diversity and uses of normalization reference materials and anomaly calculation methods. Sci. Total Environ. 2023, 856, 158890. [Google Scholar] [CrossRef]
- Wasson, J.T.; Kallemeyn, G.W. Compositions of chondrites. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1988, 325, 535–544. [Google Scholar]
- Wibner, S.; Antrekowitsch, H.; Meisel, T.C. Studies on the Formation and Processing of Aluminium Dross with Particular Focus on Special Metals. Metals 2021, 11, 1108. [Google Scholar] [CrossRef]
- Mitchell, A. Oxide inclusion behaviour during consumable electrode remelting. Ironmak. Steelmak. 1974, 1, 172–179. [Google Scholar]
- Plöckinger, E.; Straube, H. Die Metallurgie der Edelstahlerzeugung. In Die Edelstahlerzeugung: Schmelzen, Gießen, Prüfen; Plöckinger, E., Straube, H., Eds.; Springer: Vienna, Austria, 1965; pp. 1–329. [Google Scholar]
- Verma, N.; Pistorius, P.C.; Fruehan, R.J.; Potter, M.; Lind, M.; Story, S. Transient inclusion evolution during modification of alumina inclusions by calcium in liquid steel: Part I. Background, experimental techniques and analysis methods. Metall. Mater. Trans. B 2011, 42, 711–719. [Google Scholar] [CrossRef]
- Lind, M.; Holappa, L. Transformation of Alumina Inclusions by Calcium Treatment. Metall. Mater. Trans. B 2010, 41, 359–366. [Google Scholar] [CrossRef]
Parameter | Ingot 1 | Ingot 2 | Ingot 3 |
---|---|---|---|
Samples | Inclusion 1 | Inclusion 2 | Top slag Mold entrance Runner brick Runner brick used |
Steel grade | 1.4545 | 1.2738 | 1.4545 |
Deoxidizing agent | Al | Al | Al |
Calcium treatment | Yes | No | Yes |
Auxiliary materials | Casting powder 1 | Casting powder 2 | Casting powder 1 |
Blower powder 1 | Blower powder 1 | Blower powder 2 | |
Covering powder | Covering powder | Covering powder |
Steel Grade | C | Si | Mn | P | S | Cr | Mo | Ni | Fe |
---|---|---|---|---|---|---|---|---|---|
1.4545 | ≤0.07 | ≤1.00 | ≤1.00 | ≤0.030 | ≤0.015 | 14.00–15.50 | <0.50 | 3.50–5.50 | Bal. |
1.2738 | 0.35–0.45 | 0.20–0.40 | 1.30–1.60 | ≤0.030 | ≤0.030 | 1.80–2.10 | 0.15–0.25 | 0.90–1.20 | Bal. |
Sample | SEM/EDX | ICP-MS | MC-ICP-MS | LA-ICP-MS | LA-MC-ICP-MS |
---|---|---|---|---|---|
Inclusion 1 | ✓ | ✓ | ✓ | ||
Inclusion 2 | ✓ | ✓ | ✓ | ||
Casting powder 1 | ✓ | ✓ | |||
Casting powder 2 | ✓ | ✓ | |||
Blower powder 1 | ✓ | ✓ | |||
Blower powder 2 | ✓ | ✓ | |||
Covering powder | ✓ | ✓ | |||
Top slag | ✓ | ✓ | |||
Mold entrance | ✓ | ✓ | |||
Runner brick | ✓ | ✓ | |||
Runner brick unused | ✓ | ✓ | |||
Runner brick used | ✓ | ✓ |
Sample | Method | Mass Fraction w, Percentage by Mass | REE Anomalies | 87Sr/86Sr | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MgO | Al2O3 | SiO2 | CaO | La | Eu/Eu* | Er/Er* | Yb/Yb* | |||
Inclusion 1 | LA-(MC-)ICP-MS | 0.09 | 45 | 16 | 0.0645 | 0.2 | 1.0 | 0.2 | 0.7117 0.7083 | |
SEM/EDX | 49 | 3 | 23 | |||||||
Inclusion 2 | LA-(MC-)ICP-MS | 0.11 | 49 | 14 | 0.0773 | 0.1 | 1.0 | 0.2 | 0.7118 0.7121 | |
SEM/EDX | 51 | 6 | 24 | |||||||
Casting powder 1 | (MC-)ICP-MS | 1.48 | 8.0 | 47.6 | 21.4 | 0.0026 | 0.8 | 6.1 | 1.0 | 0.7081 |
Casting powder 2 | (MC-)ICP-MS | 1.05 | 10.1 | 25.0 | 4.8 | 0.0031 | 0.7 | 1.0 | 1.0 | 0.7077 |
Blower powder 1 | (MC-)ICP-MS | 0.90 | 32.2 | 20.0 | 24.2 | 0.0011 | 0.9 | 1.1 | 1.1 | 0.7096 |
Blower powder 2 | (MC-)ICP-MS | 0.54 | 2.7 | 53.8 | 16.4 | 0.0047 | 0.9 | 1.0 | 1.0 | 0.7098 |
Covering powder | (MC-)ICP-MS | 3.24 | 83.8 | 2.2 | 1.2 | 0.0003 | 4.6 | 0.9 | 1.6 | 0.7093 |
Top slag | (MC-)ICP-MS | 2.23 | 50.5 | 1.7 | 1.6 | 0.0003 | 4.3 | 0.8 | 1.3 | 0.7097 |
Mold entrance | (MC-)ICP-MS | 0.54 | 60.9 | 34.4 | 0.1 | 0.0063 | 0.7 | 1.0 | 1.0 | 0.7119 |
Runner brick | (MC-)ICP-MS | 0.49 | 46.7 | 36.3 | 0.1 | 0.0083 | 0.6 | 1.0 | 1.0 | 0.7116 |
Runner brick unused | LA-(MC-)ICP-MS | 36.5 | 23.0 | 0.2 | 0.0052 | 0.6 | 1.0 | 1.0 | 0.7116 | |
Runner brick used | LA-(MC-)ICP-MS | 37.2 | 29.5 | 0.3 | 0.0002 | 0.6 | 1.1 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walkner, C.; Mukhametzianova, G.; Wagner, S.; Korp, J.C.; Graf, A.; Irrgeher, J.; Meisel, T.C.; Prohaska, T. Tracing the Origin of Oxide Inclusions in Vacuum Arc Remelted Steel Ingots Using Trace Element Profiles and Strontium Isotope Ratios. Metals 2025, 15, 67. https://doi.org/10.3390/met15010067
Walkner C, Mukhametzianova G, Wagner S, Korp JC, Graf A, Irrgeher J, Meisel TC, Prohaska T. Tracing the Origin of Oxide Inclusions in Vacuum Arc Remelted Steel Ingots Using Trace Element Profiles and Strontium Isotope Ratios. Metals. 2025; 15(1):67. https://doi.org/10.3390/met15010067
Chicago/Turabian StyleWalkner, Christoph, Gulnaz Mukhametzianova, Stefan Wagner, Jörg C. Korp, Andreas Graf, Johanna Irrgeher, Thomas C. Meisel, and Thomas Prohaska. 2025. "Tracing the Origin of Oxide Inclusions in Vacuum Arc Remelted Steel Ingots Using Trace Element Profiles and Strontium Isotope Ratios" Metals 15, no. 1: 67. https://doi.org/10.3390/met15010067
APA StyleWalkner, C., Mukhametzianova, G., Wagner, S., Korp, J. C., Graf, A., Irrgeher, J., Meisel, T. C., & Prohaska, T. (2025). Tracing the Origin of Oxide Inclusions in Vacuum Arc Remelted Steel Ingots Using Trace Element Profiles and Strontium Isotope Ratios. Metals, 15(1), 67. https://doi.org/10.3390/met15010067