Optimizing Recycling Processes for Mixed LFP/NMC Lithium-Ion Batteries: A Comparative Study of Acid-Excess and Acid-Deficient Leaching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Leaching
2.1.2. Solvent Extraction
2.2. Methods
2.2.1. Analytical Methods
2.2.2. Design of Experiments
3. Results and Discussion
3.1. Leaching
3.1.1. Acid-Excess Leaching
3.1.2. Acid-Deficient Leaching
3.1.3. Residue Reintroduction Under Acid-Deficient Leaching: A Strategy to Increase Leaching Yields
3.1.4. Comparison of Acid-Excess Leaching and Acid-Deficient Leaching with Leaching Residue Reintroduction
3.2. Solvent Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chagnes, A.; Pospiech, B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries: Technologies for recycling spent lithium-ion batteries. J. Chem. Technol. Biotechnol. 2013, 88, 1191–1199. [Google Scholar] [CrossRef]
- Mennik, F.; Dinç, N.İ.; Burat, F. Selective recovery of metals from spent mobile phone lithium-ion batteries through froth flotation followed by magnetic separation procedure. Results Eng. 2023, 17, 100868. [Google Scholar] [CrossRef]
- Shen, K.; Yuan, C.; Hauschild, M. Direct recycling of lithium ion batteries from electric vehicles for closed-loop life cycle impact mitigation. CIRP Ann. 2023, 72, 13–16. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef]
- Srivastava, V.; Rantala, V.; Mehdipour, P.; Kauppinen, T.; Tuomikoski, S.; Heponiemi, A.; Runtti, H.; Tynjälä, P.; Simões Dos Reis, G.; Lassi, U. A comprehensive review of the reclamation of resources from spent lithium-ion batteries. Chem. Eng. J. 2023, 474, 145822. [Google Scholar] [CrossRef]
- Regulation (EU) 2023/1542 of the European Parliament and of the Council. 2023. Available online: https://eur-lex.europa.eu/eli/reg/2023/1542/oj (accessed on 13 January 2025).
- Vanderbruggen, A.; Hayagan, N.; Bachmann, K.; Ferreira, A.; Werner, D.; Horn, D.; Peuker, U.; Serna-Guerrero, R.; Rudolph, M. Lithium-Ion Battery Recycling─Influence of Recycling Processes on Component Liberation and Flotation Separation Efficiency. ACS EST Eng. 2022, 2, 2130–2141. [Google Scholar] [CrossRef]
- Werner, D.; Peuker, U.A.; Mütze, T. Recycling Chain for Spent Lithium-Ion Batteries. Metals 2020, 10, 316. [Google Scholar] [CrossRef]
- Fan, X.; Song, C.; Lu, X.; Shi, Y.; Yang, S.; Zheng, F.; Huang, Y.; Liu, K.; Wang, H.; Li, Q. Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2. J. Alloys Compd. 2021, 863, 158775. [Google Scholar] [CrossRef]
- Guimarães, L.F.; Botelho Junior, A.B.; Espinosa, D.C.R. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Miner. Eng. 2022, 183, 107597. [Google Scholar] [CrossRef]
- Yang, Y.; Meng, X.; Cao, H.; Lin, X.; Liu, C.; Sun, Y.; Zhang, Y.; Sun, Z. Selective Recovery of Lithium from Spent Lithium Iron Phosphate Batteries: A Sustainable Process. Green Chem. 2016, 18, 1839–1854. [Google Scholar] [CrossRef]
- Li, H.; Xing, S.; Liu, Y.; Li, F.; Guo, H.; Kuang, G. Recovery of lithium, iron and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain. Chem. Eng. 2017, 5, 8017–8024. [Google Scholar] [CrossRef]
- Benjamasutin, P.; Promphan, R. Determination of Optimal Parameters for the Application of Hydrogen Peroxide as Reducing Agent in the Leaching Process. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2022. [Google Scholar]
- Chen, X.; Cao, L.; Kang, D.; Li, J.; Zhou, T.; Ma, H. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium. Waste Manag. 2018, 80, 198–210. [Google Scholar] [CrossRef]
- Zou, Y. Leaching of NMC industrial black mass in the presence of LFP. Sci. Rep. 2024, 14, 10818. [Google Scholar] [CrossRef]
- Azimi, G.; Chan, K.H. A review of contemporary and emerging recycling methods for lithium-ion batteries with a focus on NMC cathodes. Resour. Conserv. Recycl. 2024, 209, 107825. [Google Scholar] [CrossRef]
- Mehdi, A. Oxfordenergy. Insight-145-Lithium-Price-Volatility. 2024. Available online: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2024/02/Insight-145-Lithium-Price-Volatility.pdf (accessed on 4 November 2024).
- Nadimi, H.; Jalalian Karazmoudeh, N. Leaching of Co, Mn and Ni Using H2O2 in Sulfuric Acid Medium from Mobile Phone LIBs. J. Inst. Eng. India Ser. D 2020, 101, 111–116. [Google Scholar] [CrossRef]
- Zou, Y.; Chernyaev, A.; Seisko, S.; Sainio, J.; Lundström, M. Removal of iron and aluminum from hydrometallurgical NMC-LFP recycling process through precipitation. Miner. Eng. 2024, 218, 109037. [Google Scholar] [CrossRef]
- Hubert, P.; Chagnes, A.; Jradi, S.; Clerget, L. Selective Metal Recovery: Innovating Leaching from Lfp-NMC Cathode Mixtures in Lithium-Ion Batteries. In Electrochemical Society Meeting Abstracts 245; The Electrochemical Society, Inc.: San Francisco, CA, USA, 2024. [Google Scholar]
- Cox, D.R.; Reid, N. The Theory of the Design of Experiments; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Narukulla, S.; Bogadi, S.; Tallapaneni, V.; Sanapalli, B.K.R.; Sanju, S.; Khan, A.A.; Malik, A.; Barai, H.R.; Mondal, T.K.; Karri, V.V.S.R.; et al. Comparative study between the Full Factorial, Box–Behnken, and Central Composite Designs in the optimization of metronidazole immediate release tablet. Microchem. J. 2024, 207, 111875. [Google Scholar] [CrossRef]
- Chernyaev, A.; Zou, Y.; Wilson, B.P.; Lundström, M. The interference of copper, iron and aluminum with hydrogen peroxide and its effects on reductive leaching of LiNi1/3Mn1/3Co1/3O2. Sep. Purif. Technol. 2022, 281, 119903. [Google Scholar] [CrossRef]
- Gratz, E.; Sa, Q.; Apelian, D.; Wang, Y. A closed loop process for recycling spent lithium ion batteries. J. Power Sources 2014, 262, 255–262. [Google Scholar] [CrossRef]
- Chen, W.-S.; Ho, H.-J. Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods. Metals 2018, 8, 321. [Google Scholar] [CrossRef]
- Billy, E.; Joulié, M.; Laucournet, R.; Boulineau, A.; De Vito, E.; Meyer, D. Dissolution Mechanisms of LiNi1/3Mn1/3Co1/3O2 Positive Electrode Material from Lithium-Ion Batteries in Acid Solution. ACS Appl. Mater. Interfaces 2018, 10, 16424–16435. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chem. Eng. J. 2015, 281, 418–427. [Google Scholar] [CrossRef]
- Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O. Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll. 2011, 25, 915–920. [Google Scholar] [CrossRef]
- Vieceli, N.; Ottink, T.; Stopic, S.; Dertmann, C.; Swiontek, T.; Vonderstein, C.; Sojka, R.; Reinhardt, N.; Ekberg, C.; Friedrich, B.; et al. Solvent extraction of cobalt from spent lithium-ion batteries: Dynamic optimization of the number of extraction stages using factorial design of experiments and response surface methodology. Sep. Purif. Technol. 2023, 307, 122793. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, S.; Song, S.; Sun, W.; Wang, L. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Waste Manag. 2020, 102, 131–138. [Google Scholar] [CrossRef]
- Djoudi, N.; Le Page Mostefa, M.; Muhr, H. Precipitation of Cobalt Salts for Recovery in Leachates. Chem. Eng. Technol. 2019, 42, 1492–1499. [Google Scholar] [CrossRef]
- Vieceli, N.; Reinhardt, N.; Ekberg, C.; Petranikova, M. Optimization of Manganese Recovery from a Solution Based on Lithium-Ion Batteries by Solvent Extraction with D2EHPA. Metals 2020, 11, 54. [Google Scholar] [CrossRef]
- Locati, A.; Mikulić, M.; Rouquette, L.M.J.; Ebin, B.; Petranikova, M. Production of High Purity MnSO4·H2O from Real NMC111 Lithium-Ion Batteries Leachate Using Solvent Extraction and Evaporative Crystallization. Solvent Extr. Ion Exch. 2024, 1–22. [Google Scholar] [CrossRef]
- Rodrigues, I.R.; Deferm, C.; Binnemans, K.; Riaño, S. Separation of cobalt and nickel via solvent extraction with Cyanex-272: Batch experiments and comparison of mixer-settlers and an agitated column as contactors for continuous counter-current extraction. Sep. Purif. Technol. 2022, 296, 121326. [Google Scholar] [CrossRef]
- Pahla, G.; Ntuli, F.; Magwa, N. New experimental findings on the separation of cobalt and nickel from an ammonia-ammonium-based leach liquor using ammonium-saponified Cyanex 272. S. Afr. J. Chem. Eng. 2024, 49, 1–10. [Google Scholar] [CrossRef]
Li | Ni | Mn | Co | Fe | P | O | D10 | D50 | D90 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
LFP | Wt. % | 4.64 | 34.23 | 18.01 | 43.12 | 0.020 | 0.074 | 4.73 | |||
Molar ratio | 1.00 | 0.92 | 0.87 | 4.03 | |||||||
NMC | Wt. % | 7.71 | 49.41 | 4.30 | 6.78 | 31.80 | 0.019 | 0.094 | 7.53 | ||
Molar ratio | 1.00 | 0.76 | 0.07 | 0.10 | 1.79 |
H2SO4 (mol/L) | H2O2 % (Vol. %) | S/L (g/L) | %D(Ni) | %D(Mn) | %D(Co) | %D(Li) |
---|---|---|---|---|---|---|
2 | 4 | 42.9 | 100.0 | 97.9 | 97.6 | 89.3 |
1 | 3 | 50 | 92.6 | 90.1 | 90.7 | 89.2 |
3 | 3 | 50 | 94.5 | 93.1 | 93.1 | 88.2 |
1 | 5 | 50 | 100.0 | 99.8 | 98.9 | 89.9 |
3 | 5 | 50 | 100.0 | 100.0 | 99.7 | 89.1 |
2 | 2.6 | 70 | 80.4 | 81.1 | 82.1 | 88.3 |
0.6 | 4 | 70 | 92.8 | 92.4 | 93.1 | 89.9 |
2 | 4 | 70 | 89.9 | 92.0 | 93.1 | 92.4 |
2 | 4 | 70 | 92.0 | 95.2 | 95.6 | 92.7 |
2 | 4 | 70 | 89.7 | 91.9 | 92.7 | 91.9 |
3.4 | 4 | 70 | 90.5 | 90.7 | 91.1 | 92.3 |
2 | 5.4 | 70 | 97.7 | 100.0 | 100.0 | 90.4 |
1 | 3 | 90 | 74.4 | 73.5 | 74.8 | 88.9 |
3 | 3 | 90 | 79.1 | 79.7 | 80.3 | 89.1 |
1 | 5 | 90 | 96.9 | 100.0 | 100.0 | 93.7 |
3 | 5 | 90 | 91.7 | 98.1 | 96.8 | 98.9 |
2 | 4 | 97.1 | 78.2 | 78.6 | 79.2 | 86.0 |
Ni | Mn | Co | |
---|---|---|---|
90.6 | 91.4 | 91.7 | |
6.1 | 7.5 | 6.9 | |
6.4 | 5.0 | 4.7 | |
2.8 | 3.5 | 3.4 | |
4 | 4 | 4 | |
70 | 70 | 70 | |
F-value | 68.8 | 49.5 | 44.4 |
p-value | <0.0001 | <0.0001 | <0.0001 |
R2 | 0.94 | 0.92 | 0.91 |
0.93 | 0.90 | 0.89 | |
RMSE | 2.17 | 2.64 | 2.62 |
H2O2 in % (Vol. %) | S/L (g/L) | %D(Ni) | %D(Mn) | %D(Co) | %D(Li) |
---|---|---|---|---|---|
4 | 48.4 | 78.6 | 78.7 | 76.6 | 81.2 |
3 | 50 | 77.9 | 75.7 | 74.9 | 79.4 |
5 | 50 | 79.0 | 76.2 | 76.3 | 78.8 |
2.9 | 70 | 76.3 | 74.5 | 76.1 | 80.0 |
4 | 70 | 78.5 | 76.4 | 77.7 | 80.3 |
4 | 70 | 77.7 | 79.2 | 79.4 | 80.3 |
5.1 | 70 | 75.4 | 73.1 | 75.1 | 79.1 |
3 | 90 | 71.5 | 72.3 | 72.8 | 80.2 |
5 | 90 | 76.5 | 76.7 | 79.2 | 81.2 |
4 | 91.6 | 75.5 | 77.0 | 78.1 | 80.3 |
Average values (%) | 76.7 | 76.0 | 76.6 | 80.1 | |
Standard deviations (%) | 2.2 | 2.2 | 2.1 | 0.8 | |
RSD (%) | 2.9 | 2.9 | 2.7 | 1.0 |
%D(Ni) | %D(Mn) | %D(Co) | %D(Li) | |
---|---|---|---|---|
Experimental test for acid-deficient leaching without recirculation (S/L = 50 g/L) | 76.7 | 76.0 | 76.6 | 80.1 |
Experimental test for acid-deficient with 60%(Wt. %) reintroduction(S/L = 66 g/L) * | 87.1 | 87.1 | 87.4 | 89.4 |
Acid-deficient leaching with Calculation with 60%(Wt. %) recirculation after 1 reintroduction loop (S/L = 66 g/L) * | 87.4 | 86.9 | 87.4 | 89.7 |
Calculation with acid-deficient leaching with 60%(Wt. %) recirculation after 7 reintroduction loops (S/L = 88 g/L) * | 89.2 | 88.8 | 89.1 | 91.0 |
%D(Ni) | %D(Mn) | %D(Co) | %D(Li) | %D(Fe) | %D(Al) | %D(Cu) | |
---|---|---|---|---|---|---|---|
Experimental test of acid-excess leaching without reintroduction | 100 | 100 | 99.9 | 88.0 | 100 | 17 | 100 |
Experimental test of acid-deficient leaching without reintroduction | 76.7 | 76.0 | 76.6 | 80.1 | 0 | 0 | 5.8 |
Calculation under acid-deficient leaching with reintroduction | 89.2 | 88.8 | 89.1 | 91.0 | 0 | 0 | 13.3 |
%D(Ni) | %D(Mn) | %D(Co) | %D(Li) | Number of Unit Operations | mol H2SO4 (per Liter of PLS) | mol H2O2 (per Liter of PLS) | mol NaOH (per Liter of PLS) | |
---|---|---|---|---|---|---|---|---|
(1) | 95.5 | 95.5 | 95.4 | 84 | 3 | 1 | 2.1 | 0.6 |
(2) | 89.2 | 87 | 89 | 90.7 | 1 | 0.4 | 1.3 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubert, P.; Noclain, A.; Jradi, S.; Chagnes, A. Optimizing Recycling Processes for Mixed LFP/NMC Lithium-Ion Batteries: A Comparative Study of Acid-Excess and Acid-Deficient Leaching. Metals 2025, 15, 74. https://doi.org/10.3390/met15010074
Hubert P, Noclain A, Jradi S, Chagnes A. Optimizing Recycling Processes for Mixed LFP/NMC Lithium-Ion Batteries: A Comparative Study of Acid-Excess and Acid-Deficient Leaching. Metals. 2025; 15(1):74. https://doi.org/10.3390/met15010074
Chicago/Turabian StyleHubert, Pierric, Angelina Noclain, Safi Jradi, and Alexandre Chagnes. 2025. "Optimizing Recycling Processes for Mixed LFP/NMC Lithium-Ion Batteries: A Comparative Study of Acid-Excess and Acid-Deficient Leaching" Metals 15, no. 1: 74. https://doi.org/10.3390/met15010074
APA StyleHubert, P., Noclain, A., Jradi, S., & Chagnes, A. (2025). Optimizing Recycling Processes for Mixed LFP/NMC Lithium-Ion Batteries: A Comparative Study of Acid-Excess and Acid-Deficient Leaching. Metals, 15(1), 74. https://doi.org/10.3390/met15010074