A Critical Review on the Comparative Assessment of Rare-Earth and Non-Rare-Earth Alloying in Magnesium Alloys
Abstract
:1. Introduction
2. Microstructural Variations Induced by RE and Non-RE Alloying Elements
3. Texture Modifications Caused by RE and Non-RE Alloying Additions
4. Corrosion Behavior of RE- and Non-RE-Based Mg Alloy
5. Impact of RE and Non-RE Alloying on Strength and Ductility of Mg Alloys
RE-Mg Alloy | Precipitates/Phase | M.P. °C | RE-Mg Alloy | Precipitates/Phase | M.P. °C |
---|---|---|---|---|---|
Mg-Al | Mg17Al12 | 455 | Mg-Yb | Mg2Yb | 718 |
Mg-La | Mg12La | 640 | Mg-Y | Mg24Y5 | 605 |
Mg-Ce | Mg12Ce | 611 | Mg-Al-La | Al1lLa3 | 1240 |
Mg-Nd | Mg41Nd5 | 560 | Mg-Al-Ce | Al1l Ce3 | 1235 |
Mg-Gd | Mg5Gd | 642 | Mg-Al-Ce | Al2 -Ce | 1480 |
Mg-Dy | Mg24Dy5 | 610 | Mg-Al-Nd | Al1l Nd3 | 1235 |
Mg-Ho | Mg24Ho5 | 610 | Mg-Al-Nd | Al2Nd | 1460 |
Mg-Er | Mg24Er5 | 610 | Mg-Al-Y | Al2Y | 1485 |
6. Conclusions
- The addition of RE and non-RE alloying elements in Mg alloys significantly improves the grain refinement and mechanical properties, by solute segregation, heterogeneous nucleation, and dynamic recrystallization. RE elements with high grain refinement potential include Nd, Gd, and Zr due to their ability for constitutional super-cooling and to form intermetallic phases while non-RE elements (e.g., Al, Ca) are cheaper alternatives with comparable refinement efficacity. These alloying strategies can yield tailored microstructures and enhanced performance, all of which come with scalability constraints and composition optimization challenges.
- By alloying Mg with the addition of RE and non-RE elements, the texture evolution is considerably modified with basal texture intensities reduced, and isotropic deformation mechanisms promoted. A translation of the basal texture is obtained when the RE-type elements (e.g., Y, Nd, Ce) dissolve, subsequently weakening the basal textures, while the non-RE elements (e.g., Ca, Zn) have been found to result in similar effects, which could ultimately activate non-basal slip systems and improve ductility and mechanical performance.
- RE-alloyed Mg demonstrates superior strength and thermal stability, suitable for aerospace, biomedical, and electronics industries, but is very expensive. Non-RE alloys, like Ca and Mn, on the other hand, are cost-effective with good mechanical properties and hence suitable for automotive and structural applications that require economy and scalability.
- The corrosion resistance of Mg is improved by alloying with Al, Zn, and Mn, with the subsequent development of protective oxide layers. For example, Mg17Al12 may form, along with a sacrificial anodic reaction. In general, RE elements such as Nd, Gd, Y, and Er improve corrosion resistance by the textural modification of the alloy to reduce the establishment of active galvanic cells, promoting the formation of stable protective films. However, cathodic secondary phases like intermetallic ones may form and contribute to localized corrosion through micro-galvanic coupling. The corrosion behavior thus depends not only on the choice and concentration of alloying elements but also on the interaction between the matrix and secondary phases, which may improve or degrade the overall corrosion resistance in various environments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RE | Rare Earth |
M.P. | Melting Point |
YS | Yield Strength |
EL | Elongation |
GP | Guinier–Preston |
GRF | Grain Restriction Factor |
SEM | Scanning Electron Microscopy |
OM | Optical Microscopy |
EDS | Energy Dispersive Spectroscopy |
TEM | Transmission Electron Microscopy |
APT | Atom Probe Tomography |
EBSD | Electron Backscattered Diffraction |
RD | Rolling Direction |
TD | Transverse Direction |
ND | Normal Direction |
ED | Extrusion Direction |
HCP | Hexagonal Close-packed |
CRSS | Critical Resolved Shear Stress |
References
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Li, A.; Qiao, Y.; Fu, S.; Gu, Y. An analysis of new materials and their effects on improving fuel efficiency. J. Phys. Conf. Ser. 2022, 2194, 012001. [Google Scholar] [CrossRef]
- Kulekci, M.K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 2008, 39, 851–865. [Google Scholar] [CrossRef]
- Mordike, B.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Jun, T.-S.; Tariq, H.M.R.; Minhas, B.Z.; Rehman, M.A.U. Corrosion Behavior of Mg Alloys in Simulated Body Fluids. In Magnesium Alloys for Biomedical Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 177–188. [Google Scholar]
- Khan, M.A.; Afifi, M.A.; Hafeez, M.A.; Chaudry, U.M.; Brechtl, J.; Zulfiqar, M.; Tariq, H.M.R.; Hussain, M.A.; Kamran, M.; ishtiaq, M. Evolution of microstructure, texture, and mechanical performance of Mg-13Gd-2Er-0.3 Zr alloy by double extrusion at different temperatures. Arch. Civ. Mech. Eng. 2024, 25, 26. [Google Scholar] [CrossRef]
- Hussain, F.; Manzoor, M.U.; Kamran, M.; Ahmad, T.; Riaz, F.; Mukhtar, S.; Rehan Tariq, H.M.; Ishtiaq, M. Optimizing Biocompatibility of Mg-AZ31B Alloy through Varied Surface Roughness and Anodization Time. Iran. J. Mater. Sci. Eng. 2024, 21. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Rehan Tariq, H.M.; Hamad, K.; Khan, M.K.; Jun, T.-S. Twinning-induced texture weakening in Mg alloy and its consequent influence on ductility and formability. Mater. Sci. Technol. 2024, 41, 02670836241251942. [Google Scholar] [CrossRef]
- Xu, W.; Yu, J.; Jia, L.; Gao, C.; Miao, Z.; Wu, G.; Li, G.; Zhang, Z. Grain refinement impact on the mechanical properties and wear behavior of Mg-9Gd-3Y-2Zn-0.5Zr alloy after decreasing temperature reciprocating upsetting-extrusion. J. Magnes. Alloys 2022, 10, 3506–3519. [Google Scholar] [CrossRef]
- Sun, M.; Yang, D.; Zhang, Y.; Mao, L.; Li, X.; Pang, S. Recent Advances in the Grain Refinement Effects of Zr on Mg Alloys: A Review. Metals 2022, 12, 1388. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.P.; Guo, Y.C.; Liu, T.; Xia, F.; Zeng, Z.W.; Liang, M.X. Precipitation process and effect on mechanical properties of Mg–9Gd–3Y–0.6Zn–0.5Zr alloy. Mater. Sci. Eng. A 2007, 454–455, 274–280. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Dong, J.; Zeng, X.Q.; Ding, W.J. Precipitation and its effect on the mechanical properties of a cast Mg–Gd–Nd–Zr alloy. Mater. Sci. Eng. A 2008, 489, 44–54. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Saufan, A.; Lin, P.H.; Bor, H.Y.; Lee, S.; Kawamura, Y. Mechanical properties and strengthening behavior of Mg–Zn–MM alloy. Mater. Chem. Phys. 2014, 148, 28–31. [Google Scholar] [CrossRef]
- Guo, F.; Yu, H.; Wu, C.; Xin, Y.; He, C.; Liu, Q. The mechanism for the different effects of texture on yield strength and hardness of Mg alloys. Sci. Rep. 2017, 7, 8647. [Google Scholar] [CrossRef] [PubMed]
- Stráská, J.; Minárik, P.; Šašek, S.; Veselý, J.; Bohlen, J.; Král, R.; Kubásek, J. Texture Hardening Observed in Mg–Zn–Nd Alloy Processed by Equal-Channel Angular Pressing (ECAP). Metals 2020, 10, 35. [Google Scholar] [CrossRef]
- Tekumalla, S.; Seetharaman, S.; Almajid, A.; Gupta, M. Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review. Metals 2015, 5, 1–39. [Google Scholar] [CrossRef]
- Wang, M.; Yu, H.L.; Chen, Y.; Huang, M.X. Machine learning assisted screening of non-rare-earth elements for Mg alloys with low stacking fault energy. Comput. Mater. Sci. 2021, 196, 110544. [Google Scholar] [CrossRef]
- Tan, J.; Ramakrishna, S. Applications of Magnesium and Its Alloys: A Review. Appl. Sci. 2021, 11, 6861. [Google Scholar] [CrossRef]
- Bai, J.; Yang, Y.; Wen, C.; Chen, J.; Zhou, G.; Jiang, B.; Peng, X.; Pan, F. Applications of magnesium alloys for aerospace: A review. J. Magnes. Alloys 2023, 11, 3609–3619. [Google Scholar] [CrossRef]
- Jin, S.-C.; Cha, J.W.; Go, J.; Bae, J.H.; Park, S.H. Comparative study of extrudability, microstructure, and mechanical properties of AZ80 and BA53 alloys. J. Magnes. Alloys 2023, 11, 249–258. [Google Scholar] [CrossRef]
- Go, J.; Jin, S.-C.; Kim, H.; Yu, H.; Park, S.H. Novel Mg–Bi–Al alloy with extraordinary extrudability and high strength. J. Alloys Compd. 2020, 843, 156026. [Google Scholar] [CrossRef]
- Go, J.; Lee, J.U.; Yu, H.; Park, S.H. Influence of Bi addition on dynamic recrystallization and precipitation behaviors during hot extrusion of pure Mg. J. Mater. Sci. Technol. 2020, 44, 62–75. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, Y.J.; Kim, H.J.; Jin, S.-C.; Lee, J.U.; Komissarov, A.; Shin, K.S. Recent research progress on magnesium alloys in Korea: A review. J. Magnes. Alloys 2023, 11, 3545–3584. [Google Scholar] [CrossRef]
- Jayasathyakawin, S.; Ravichandran, M.; Baskar, N.; Anand Chairman, C.; Balasundaram, R. Mechanical properties and applications of Magnesium alloy—Review. Mater. Today Proc. 2020, 27, 909–913. [Google Scholar] [CrossRef]
- Wu, G.; Tong, X.; Wang, C.; Jiang, R.; Ding, W. Recent advances on grain refinement of magnesium rare-earth alloys during the whole casting processes: A review. J. Magnes. Alloys 2023, 11, 3463–3483. [Google Scholar] [CrossRef]
- Atrens, A.; Shi, Z.; Mehreen, S.U.; Johnston, S.; Song, G.-L.; Chen, X.; Pan, F. Review of Mg alloy corrosion rates. J. Magnes. Alloys 2020, 8, 989–998. [Google Scholar] [CrossRef]
- Zeng, R.-c.; Zhang, J.; Huang, W.-j.; Dietzel, W.; Kainer, K.U.; Blawert, C.; Ke, W. Review of studies on corrosion of magnesium alloys. Trans. Nonferrous Met. Soc. China 2006, 16, s763–s771. [Google Scholar] [CrossRef]
- Hsu, Y.; Lu, Y.; Wang, S.; Zheng, Y.; Xia, D.; Liu, Y. Magnesium alloys in tumor treatment: Current research status, challenges and future prospects. J. Magnes. Alloys 2023, 11, 3399–3426. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Liu, J.; Wang, L.; Tang, Y.; Wang, K. A review on magnesium alloys for biomedical applications. Front. Bioeng. Biotechnol. 2022, 10, 953344. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.-N.; Zheng, Y.-F. A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 2010, 4, 111–115. [Google Scholar] [CrossRef]
- Czerwinski, F. Magnesium research in Canada: Highlights of the last two decades. J. Magnes. Alloys 2023, 11, 3484–3510. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, A.; Li, C.; Xie, H.; Jiang, B.; Dong, Z.; Jin, P.; Pan, F. Recent advances of high strength Mg-RE alloys: Alloy development, forming and application. J. Mater. Res. Technol. 2023, 26, 2919–2940. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Wu, R.; Hou, L.; Zhang, M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloys 2018, 6, 277–291. [Google Scholar] [CrossRef]
- Imandoust, A.; Barrett, C.D.; Al-Samman, T.; Inal, K.A.; El Kadiri, H. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. J. Mater. Sci. 2017, 52, 1–29. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Z.; Jiang, B.; Wang, C.; Qian, X.; Vitos, L.; Pan, F. Influence of non-rare earth elements on basal stacking fault energy of Mg binary alloys in solid solution. Scr. Mater. 2025, 257, 116479. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, M.; Wei, K.; Li, F.; Li, X.; Zeng, X. Defect, microstructure and mechanical properties of Mg–Gd binary alloy additively manufactured by selective laser melting. Mater. Sci. Eng. A 2022, 850, 143572. [Google Scholar] [CrossRef]
- Wang, J.; Chang, Z.; Liu, B.; Li, Y.; Sun, Y.; Li, H. Effect of Y Alloying on Microstructure and Mechanical Properties of AZ61 Magnesium Alloy Sheets Applied as 3C Electronic Product Shells. Crystals 2022, 12, 1643. [Google Scholar] [CrossRef]
- Qiu, D.; Zhang, M.X.; Taylor, J.A.; Kelly, P.M. A new approach to designing a grain refiner for Mg casting alloys and its use in Mg–Y-based alloys. Acta Mater. 2009, 57, 3052–3059. [Google Scholar] [CrossRef]
- Natarajan, A.R.; Solomon, E.L.S.; Puchala, B.; Marquis, E.A.; Van der Ven, A. On the early stages of precipitation in dilute Mg–Nd alloys. Acta Mater. 2016, 108, 367–379. [Google Scholar] [CrossRef]
- Gavras, S.; Easton, M.A.; Gibson, M.A.; Zhu, S.; Nie, J.-F. Microstructure and property evaluation of high-pressure die-cast Mg–La–rare earth (Nd, Y or Gd) alloys. J. Alloys Compd. 2014, 597, 21–29. [Google Scholar] [CrossRef]
- Mishra, R.K.; Brahme, A.; Sabat, R.K.; Jin, L.; Inal, K. Twinning and texture randomization in Mg and Mg-Ce alloys. Int. J. Plast. 2019, 117, 157–172. [Google Scholar] [CrossRef]
- Yu, H.; Xin, Y.; Wang, M.; Liu, Q. Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 2018, 34, 248–256. [Google Scholar] [CrossRef]
- Tong, X.; Wu, G.; Zhang, L.; Wang, Y.; Liu, W.; Ding, W. Microstructure and mechanical properties of repair welds of low-pressure sand-cast Mg–Y–RE–Zr alloy by tungsten inert gas welding. J. Magnes. Alloys 2022, 10, 180–194. [Google Scholar] [CrossRef]
- Li, M.; Xie, D.; Li, J.; Xie, H.; Huang, Q.; Pan, H.; Qin, G. Realizing ultra-fine grains and ultra-high strength in conventionally extruded Mg-Ca-Al-Zn-Mn alloys: The multiple roles of nano-precipitations. Mater. Charact. 2021, 175, 111049. [Google Scholar] [CrossRef]
- StJohn, D.H.; Qian, M.; Easton, M.A.; Cao, P.; Hildebrand, Z. Grain refinement of magnesium alloys. Metall. Mater. Trans. A 2005, 36, 1669–1679. [Google Scholar] [CrossRef]
- Qian, X.; Dong, Z.; Jiang, B.; Zhang, A.; Wang, C.; Zheng, Z.; Pan, F. The improved mechanical properties of Mg–Zn-Nd alloy with Ca addition via grain refinement and nano precipitates. Mater. Sci. Eng. A 2023, 887, 145729. [Google Scholar] [CrossRef]
- Ma, Q.; StJohn, D.H.; Frost, M.T. Characteristic zirconium-rich coring structures in Mg–Zr alloys. Scr. Mater. 2002, 46, 649–654. [Google Scholar] [CrossRef]
- Cai, S.; Lei, T.; Li, N.; Feng, F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater. Sci. Eng. C 2012, 32, 2570–2577. [Google Scholar] [CrossRef]
- Niu, R.-L.; Yan, F.-J.; Wang, Y.-S.; Duan, D.-P.; Yang, X.-M. Effect of Zr content on damping property of Mg–Zr binary alloys. Mater. Sci. Eng. A 2018, 718, 418–426. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, S.; Zhu, X.; Luo, Y. Study on as-cast microstructures and solidification process of Mg–Zn–Y Alloys. J. Non-Cryst. Solids 2008, 354, 1564–1568. [Google Scholar] [CrossRef]
- Prasad, A.; Yuan, L.; Lee, P.D.; StJohn, D.H. The Interdependence model of grain nucleation: A numerical analysis of the Nucleation-Free Zone. Acta Mater. 2013, 61, 5914–5927. [Google Scholar] [CrossRef]
- Qian, M.; Zheng, L.; Graham, D.; Frost, M.; StJohn, D. Settling of undissolved zirconium particles in pure magnesium melts. J. Light Met. 2001, 1, 157–165. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Z.Y.; Liu, Y.B.; Su, G.H.; Cheng, L.R. Effect of Al content on the microstructures and mechanical properties of Mg–Al alloys. Mater. Sci. Eng. A 2009, 508, 129–133. [Google Scholar] [CrossRef]
- Khan, M.U.F.; Mirza, F.; Gupta, R.K. High hardness and thermal stability of nanocrystalline Mg–Al alloys synthesized by the high-energy ball milling. Materialia 2018, 4, 406–416. [Google Scholar] [CrossRef]
- Zhang, M.X.; Kelly, P.M. Edge-to-edge matching and its applications: Part II. Application to Mg–Al, Mg–Y and Mg–Mn alloys. Acta Mater. 2005, 53, 1085–1096. [Google Scholar] [CrossRef]
- Liu, X.; Liu, F.; Liu, Z.; Xie, H.; Li, J. Crystal structure, phase content, and tensile properties of As-cast Mg–Gd–Y–Al alloys. Mater. Today Commun. 2020, 25, 101286. [Google Scholar] [CrossRef]
- Su, N.; Wu, Q.; Ding, C.; Wu, Y.; Peng, L. Effect of Y and Gd solutes on grain refinement of the as-extruded Mg-Gd(-Y)-Zn-Mn alloys. J. Alloys Compd. 2023, 968, 171804. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Guo, E.; Zhao, S.; Fu, Y.; Fan, R.; Feng, Y. Grain refinement and exceptional creep resistance achieved in an as-cast Mg–Y alloy with Al addition. Mater. Sci. Eng. A 2024, 901, 146587. [Google Scholar] [CrossRef]
- Fan, Y.; Zhu, G.; Park, J.-S.; Zhang, X.; Song, Z.; Wang, H.; Zeng, X.; Wang, L. The role of Ca on the microstructure and tensile properties of Mg-Al-Zn-Ca alloys. Materialia 2023, 29, 101787. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, S.; Zeng, X.; Ding, W. Effects of RE on the microstructure and mechanical properties of Mg–8Zn–4Al magnesium alloy. Mater. Sci. Eng. A 2006, 416, 109–118. [Google Scholar] [CrossRef]
- Sasaki, T.T.; Yamamoto, K.; Honma, T.; Kamado, S.; Hono, K. A high-strength Mg–Sn–Zn–Al alloy extruded at low temperature. Scr. Mater. 2008, 59, 1111–1114. [Google Scholar] [CrossRef]
- Mendis, C.L.; Oh-ishi, K.; Hono, K. Enhanced age hardening in a Mg–2.4at.% Zn alloy by trace additions of Ag and Ca. Scr. Mater. 2007, 57, 485–488. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Z.; Yang, L.; Zhao, W.; Wang, Y.; Yu, H.; Qin, C.; Wang, Z. Surface morphologies and mechanical properties of Mg-Zn-Ca amorphous alloys under chemistry-mechanics interactive environments. Metals 2019, 9, 327. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Tariq, H.M.R.; Ansari, N.; Lee, S.Y.; Jun, T.-S. Room and cryogenic deformation behavior of AZ61 and AZ61-xCaO (x = 0.5, 1 wt.%) alloy. J. Magnes. Alloys 2024, 12, 1996–2009. [Google Scholar] [CrossRef]
- Kavyani, M.; Ebrahimi, G.R.; Ezatpour, H.R.; Jahazi, M. Microstructure refinement, mechanical and biocorrosion properties of Mg–Zn–Ca–Mn alloy improved by a new severe plastic deformation process. J. Magnes. Alloys 2022, 10, 1640–1662. [Google Scholar] [CrossRef]
- Nakata, T.; Xu, C.; Ajima, R.; Shimizu, K.; Hanaki, S.; Sasaki, T.T.; Ma, L.; Hono, K.; Kamado, S. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys. Acta Mater. 2017, 130, 261–270. [Google Scholar] [CrossRef]
- Jin, C.; Liu, Z.; Yu, W.; Qin, C.; Yu, H.; Wang, Z. Biodegradable Mg–Zn–Ca-Based Metallic Glasses. Materials 2022, 15, 2172. [Google Scholar] [CrossRef]
- Miao, J.; Xue, F.; Liu, T.; Avey, T.; Marquis, E.A.; Luo, A.A. Achieving high strength-ductility synergy via Guinier-Preston zone formation in a new Mg–Zn–Al–Ca–Mn–Ce sheet alloy. Mater. Sci. Eng. A 2024, 901, 146586. [Google Scholar] [CrossRef]
- Tariq, H.M.R.; Chaudry, U.M.; Ishtiaq, M.; Kim, M.; Ali, M.; Jun, T.-S. Effect of Al addition on the room and cryogenic temperature deformation of Mg-xAl-1Zn-1Ca alloy (x = 1, 2 wt.%). J. Magnes. Alloys 2024, 12, 4694–4708. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Hamad, K.; Kim, J.-G. On the ductility of magnesium based materials: A mini review. J. Alloys Compd. 2019, 792, 652–664. [Google Scholar] [CrossRef]
- He, Y.-Y.; Lei, L.-P.; Fang, G. Interactions between dynamic recrystallization and dynamic precipitation during hot forming of magnesium alloy: Multilevel cellular automaton modeling. J. Magnes. Alloys 2024. [Google Scholar] [CrossRef]
- Mouhib, F.; Xie, Z.; Atila, A.; Guénolé, J.; Korte-Kerzel, S.; Al-Samman, T. Exploring solute behavior and texture selection in magnesium alloys at the atomistic level. Acta Mater. 2024, 266, 119677. [Google Scholar] [CrossRef]
- Lorimer, G.W.; Mackenzie, L.W.F.; Humphreys, F.J.; Wilks, T. The recrystallization behavior of AZ31 and WE43. Mater. Sci. Forum 2005, 488, 99–102. [Google Scholar] [CrossRef]
- Li, L.; Liu, W.; Qi, F.; Wu, D.; Zhang, Z. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviors in magnesium alloys—A review. J. Magnes. Alloys 2022, 10, 2334–2353. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, J.-H.; Huang, Y.; Pruncu, C.; Jiang, J. Evolution of twinning and shear bands in magnesium alloys during rolling at room and cryogenic temperature. Mater. Des. 2020, 193, 108793. [Google Scholar] [CrossRef]
- Mouhib, F.-Z.; Sheng, F.; Mandia, R.; Pei, R.; Korte-Kerzel, S.; Al-Samman, T. Texture Selection Mechanisms during Recrystallization and Grain Growth of a Magnesium-Erbium-Zinc Alloy. Metals 2021, 11, 171. [Google Scholar] [CrossRef]
- Zhao, H.-D.; Qin, G.-W.; Ren, Y.-P.; Pei, W.-L.; Dong, C.; Yun, G. Microstructure and tensile properties of as-extruded Mg-Sn-Y alloys. Trans. Nonferrous Met. Soc. China 2010, 20, s493–s497. [Google Scholar] [CrossRef]
- Ansari, N.; Sarvesha, R.; Lee, S.Y.; Singh, S.S.; Jain, J. Influence of yttrium addition on recrystallization, texture and mechanical properties of binary Mg–Y alloys. Mater. Sci. Eng. A 2020, 793, 139856. [Google Scholar] [CrossRef]
- Zhang, J.H.; Nie, K.B.; Deng, K.K.; Han, X.Z.; Wang, Z.D. Effect of Nd on the microstructure and mechanical properties of Mg–3Zn-0.5Zr alloy. Mater. Sci. Eng. A 2022, 838, 142562. [Google Scholar] [CrossRef]
- Mahjoub, R.; Stanford, N. The electronic origins of the “rare earth” texture effect in magnesium alloys. Sci. Rep. 2021, 11, 14159. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Shi, X.; Wang, Y.; Cheng, G.; Kamado, S. Texture weakening and ductility variation of Mg–2Zn alloy with CA or RE addition. Mater. Sci. Eng. A 2015, 645, 196–204. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Han, G.; Noh, Y.; Jun, T.-S. Effect of Ca alloying and cryogenic temperature on the slip transmission across the grain boundary in pure Mg. J. Alloys Compd. 2023, 950, 169828. [Google Scholar] [CrossRef]
- Chai, Y.; Jiang, B.; Song, J.; Wang, Q.; Gao, H.; Liu, B.; Huang, G.; Zhang, D.; Pan, F. Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg-Sn-Zn alloy through Ca addition. J. Alloys Compd. 2019, 782, 1076–1086. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A. Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance. Adv. Eng. Mater. 2003, 5, 837–858. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Farooq, A.; Sufyan, M.; Rehan, H.M.; Tariq, A.M.; Kim, M.; Tariq, A.; Hamad, K.; Jun, T.-S. Corrosion behavior of AZ31 and AZ31-0.5 Ca in different concentrations of NaCl and Na2SO4 at various temperatures. CORROSION 2025, 4620. [Google Scholar] [CrossRef] [PubMed]
- Atrens, A.; Song, G.-L.; Liu, M.; Shi, Z.; Cao, F.; Dargusch, M.S. Review of Recent Developments in the Field of Magnesium Corrosion. Adv. Eng. Mater. 2015, 17, 400–453. [Google Scholar] [CrossRef]
- Huo, W.T.; Lin, X.; Yu, S.; Yu, Z.T.; Zhang, W.; Zhang, Y.S. Corrosion behavior and cytocompatibility of nano-grained AZ31 Mg alloy. J. Mater. Sci. 2019, 54, 4409–4422. [Google Scholar] [CrossRef]
- Liu, M.; Uggowitzer, P.J.; Nagasekhar, A.V.; Schmutz, P.; Easton, M.; Song, G.L.; Atrens, A. Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys. Corros. Sci. 2009, 51, 602–619. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A.; Wu, X.; Zhang, B. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci. 1998, 40, 1769–1791. [Google Scholar] [CrossRef]
- Minárik, P.; Král, R.; Janeček, M. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl. Surf. Sci. 2013, 281, 44–48. [Google Scholar] [CrossRef]
- Gu, D.-D.; Peng, J.; Wang, J.-W.; Liu, Z.-T.; Pan, F.-S. Effect of Mn Modification on the Corrosion Susceptibility of Mg–Mn Alloys by Magnesium Scrap. Acta Metall. Sin. (Engl. Lett.) 2021, 34, 1–11. [Google Scholar] [CrossRef]
- Xie, Q.; Ma, A.; Jiang, J.; Liu, H.; Cheng, Z.; Gu, Y. Tailoring the corrosion behavior and mechanism of AZ31 magnesium alloys by different Ca contents for marine application. Corros. Sci. 2021, 192, 109842. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Bian, D.; Gao, S.; Leeflang, S.; Guo, H.; Zheng, Y.; Zhou, J. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Acta Biomater. 2017, 62, 418–433. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Huang, Y.; Wei, Z.; Chen, Q.; Gan, F. Improvement of corrosion resistance of AZ91D magnesium alloy by holmium addition. Corros. Sci. 2006, 48, 4223–4233. [Google Scholar] [CrossRef]
- Rosalbino, F.; Angelini, E.; De Negri, S.; Saccone, A.; Delfino, S. Electrochemical behaviour assessment of novel Mg-rich Mg-Al-RE alloys (RE = Ce, Er). Intermetallics 2006, 14, 1487–1492. [Google Scholar] [CrossRef]
- Shi, Z.; Cao, F.; Song, G.-L.; Liu, M.; Atrens, A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–RE alloys: RE=Ce, La, Nd, Y, Gd. Corros. Sci. 2013, 76, 98–118. [Google Scholar] [CrossRef]
- Trivedi, P.; Nune, K.; Misra, R. Degradation behaviour of magnesium-rare earth biomedical alloys. Mater. Technol. 2016, 31, 726–731. [Google Scholar] [CrossRef]
- Yang, M.; Liu, X.; Zhang, Z.; Song, Y.; Bai, L. Effect of adding rare earth elements Er and Gd on the corrosion residual strength of magnesium alloy. Open Phys. 2019, 17, 373–380. [Google Scholar] [CrossRef]
- Birbilis, N.; Easton, M.A.; Sudholz, A.D.; Zhu, S.M.; Gibson, M.A. On the corrosion of binary magnesium-rare earth alloys. Corros. Sci. 2009, 51, 683–689. [Google Scholar] [CrossRef]
- Özarslan, S.; Şevik, H.; Sorar, İ. Microstructure, mechanical and corrosion properties of novel Mg-Sn-Ce alloys produced by high pressure die casting. Mater. Sci. Eng. C 2019, 105, 110064. [Google Scholar] [CrossRef] [PubMed]
- Kania, A.; Nowosielski, R.; Gawlas-Mucha, A.; Babilas, R. Mechanical and Corrosion Properties of Mg-Based Alloys with Gd Addition. Materials 2019, 12, 1775. [Google Scholar] [CrossRef] [PubMed]
- Dragomir, L.; Antoniac, I.; Manescu, V.; Antoniac, A.; Miculescu, M.; Trante, O.; Streza, A.; Cotruț, C.M.; Forna, D.A. Microstructure and Corrosion Behaviour of Mg-Ca and Mg-Zn-Ag Alloys for Biodegradable Hard Tissue Implants. Crystals 2023, 13, 1213. [Google Scholar] [CrossRef]
- Li, J.-S.; Li, M.-X.; Hua, Z.-M.; Mo, Y.-T.; Guan, K.; Zha, M.; Gao, Y.; Wang, H.-Y. A corrosion-resistant and age-hardenable Mg-Al-Mn-Ca-Ce dilute alloy with fine-grained structure processed by controlled rolling. J. Mater. Sci. Technol. 2023, 163, 223–236. [Google Scholar] [CrossRef]
- Sovík, J.; Hadzima, B.; Papenberg, N.P.; Arnoldt, A.R.; Gneiger, S. Investigations of Electrochemical Characteristics of Mg-Al-Ca Alloys. Crystals 2023, 13, 1684. [Google Scholar] [CrossRef]
- Yang, P.; Ye, S.; Feng, B.; Liu, J.; Huang, S.; Liu, G.; Zhang, W.; Tang, W.; Zhu, S.; Zhang, S. Microgalvanic Corrosion of Mg–Ca and Mg–Al–Ca Alloys in NaCl and Na2SO4 Solutions. Materials 2021, 14, 7140. [Google Scholar] [CrossRef]
- Bahmani, A.; Arthanari, S.; Shin, K.S. Corrosion behavior of Mg–Mn–Ca alloy: Influences of Al, Sn and Zn. J. Magnes. Alloys 2019, 7, 38–46. [Google Scholar] [CrossRef]
- AbdelGawad, M.; Usman, C.A.; Shunmugasamy, V.C.; Karaman, I.; Mansoor, B. Corrosion behavior of Mg-Zn-Zr-RE alloys under physiological environment—Impact on mechanical integrity and biocompatibility. J. Magnes. Alloys 2022, 10, 1542–1572. [Google Scholar] [CrossRef]
- Najafi, S.; Sheikhani, A.; Sabbaghian, M.; Nagy, P.; Fekete, K.; Gubicza, J. Modification of the Tensile Performance of an Extruded ZK60 Magnesium Alloy with the Addition of Rare Earth Elements. Materials 2023, 16, 2828. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.-F. Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 2012, 43, 3891–3939. [Google Scholar] [CrossRef]
- Peng, Q.; Wu, Y.; Fang, D.; Meng, J.; Wang, L. Microstructures and mechanical properties of Mg–8Gd–0.6 Zr–x Nd (x= 0, 1, 2 and 3 mass%) alloys. J. Mater. Sci. 2007, 42, 3908–3913. [Google Scholar] [CrossRef]
- Peng, Q.; Wu, Y.; Fang, D.; Meng, J.; Wang, L. Microstructures and properties of Mg–7Gd alloy containing Y. J. Alloys Compd. 2007, 430, 252–256. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, J.; Wu, Y.; Wang, L. Microstructures and tensile properties of Mg–8Gd–0.6 Zr–xNd–yY (x + y = 3, mass%) alloys. Mater. Sci. Eng. A 2006, 433, 133–138. [Google Scholar] [CrossRef]
- Peng, Q.; Dong, H.; Wang, L.; Wu, Y.; Wang, L. Microstructure and mechanical property of Mg–8.31Gd–1.12Dy–0.38Zr alloy. Mater. Sci. Eng. A 2008, 477, 193–197. [Google Scholar] [CrossRef]
- Yamada, K.; Hoshikawa, H.; Maki, S.; Ozaki, T.; Kuroki, Y.; Kamado, S.; Kojima, Y. Enhanced age-hardening and formation of plate precipitates in Mg–Gd–Ag alloys. Scr. Mater. 2009, 61, 636–639. [Google Scholar] [CrossRef]
- Tong, X.; Wu, G.; Easton, M.A.; Sun, M.; Wang, Q.; Zhang, L. Microstructural evolution and strengthening mechanism of Mg-Y-RE-Zr alloy fabricated by quasi-directed energy deposition. Addit. Manuf. 2023, 67, 103487. [Google Scholar] [CrossRef]
- Shi, Q.; Natarajan, A.R.; Van der Ven, A.; Allison, J. Partitioning of Ca to metastable precipitates in a Mg-rare earth alloy. Mater. Res. Lett. 2023, 11, 222–230. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Tang, D.-X.; Zhang, H.-J.; Wang, L.-M.; Wang, J.; Meng, J. Effect and application of rare earth element in magnesium alloys. Chin. J. Rare Met. 2008, 32, 659–667. [Google Scholar]
- Chaudry, U.M.; Tariq, H.M.R.; Ansari, N.; Kim, C.-S.; Lee, S.Y.; Jun, T.-S. Exceptional improvement in the yield strength of AZ61 magnesium alloy via cryo-stretching and its implications on the grain growth during annealing. J. Alloys Compd. 2024, 970, 172630. [Google Scholar] [CrossRef]
- Han, G.; Noh, Y.; Chaudry, U.M.; Park, S.H.; Hamad, K.; Jun, T.-S. {10–12} extension twinning activity and compression behavior of pure Mg and Mg-0.5 Ca alloy at cryogenic temperature. Mater. Sci. Eng. A 2022, 831, 142189. [Google Scholar] [CrossRef]
- Li, M.-Y.; Guan, Z.-P.; Liu, L.-P.; Jia, H.-J.; Li, Z.-G.; Wang, M.-H.; Ma, P.-K.; Song, J.-W. Investigation of enhanced strength anisotropy in an extruded Mg–Al–Ca–Mn alloy at cryogenic temperature. Mater. Sci. Eng. A 2024, 890, 145940. [Google Scholar] [CrossRef]
- Hu, J.; Yang, G.; Liu, Z.; Fu, S.; Gao, H. Effects of deep cryogenic treatment on microstructure, mechanical, and corrosion of ZK60 Mg alloy. J. Mater. Res. Technol. 2023, 26, 3686–3700. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Wan, Y.; Jiang, S.; Han, X.; Chen, Z. Formation of nanocrystalline AZ31B Mg alloys via cryogenic rotary swaging. J. Magnes. Alloys 2023, 11, 1580–1591. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, J.-H.; Hopper, C.; Sun, C.; Jiang, J. Enhanced plasticity at cryogenic temperature in a magnesium alloy. Mater. Sci. Eng. A 2021, 811, 141001. [Google Scholar] [CrossRef]
- Montana, J.; Nelson, E. ZM-21 Magnesium Alloy Corrosion Properties and Cryogenic to Elevated Temperature Mechanical Properties; NASA: Washington, DC, USA, 1972. [Google Scholar]
- Fenn, R. Low-temperature properties of cast and wrought magnesium alloys. In Symposium on Low-Temperature Properties of High-Strength Aircraft and Missile Materials; ASTM International: West Conshohocken, PA, USA, 1961. [Google Scholar]
- Tariq, H.M.R.; Chaudry, U.M.; Kim, C.-S.; Jun, T.-S. Synergetic improvement in strength and ductility of AZX211 Mg alloy facilitated by {10–12}-{01–12} twin-twin interactions during pre-stretching at cryogenic temperature. J. Mater. Res. Technol. 2024, 29, 3249–3254. [Google Scholar] [CrossRef]
- Bhale, P.; Shastri, H.; Mondal, A.; Masanta, M.; Kumar, S. Effect of deep cryogenic treatment on microstructure and properties of AE42 Mg alloy. J. Mater. Eng. Perform. 2016, 25, 3590–3598. [Google Scholar] [CrossRef]
- Tariq, H.M.R.; Kang, H.H.; Chaudry, U.M.; Khan, M.K.; Jun, T.S. Impact of Surface Roughness on the Yield Drop of Hot-Rolled AZX311 Mg Alloy. Adv. Eng. Mater. 2024, 2401689. [Google Scholar] [CrossRef]
- Zasypkin, S.; Cheretaeva, A.; Shafeev, M.; Merson, D.; Krishtal, M. Mechanical properties and corrosion resistance of Mg-RE cast alloys and their plasma electrolytic oxidation. J. Phys. Conf. Ser. 2021, 2144, 012010. [Google Scholar] [CrossRef]
- Xu, S.; Oh-Ishi, K.; Kamado, S.; Uchida, F.; Homma, T.; Hono, K. High-strength extruded Mg–Al–Ca–Mn alloy. Scr. Mater. 2011, 65, 269–272. [Google Scholar] [CrossRef]
- Wan, Y.; Zeng, Y.; Dou, Y.; Hu, D.; Qian, X.; Zeng, Q.; Sun, K.; Quan, G. Improved mechanical properties and strengthening mechanism with the altered precipitate orientation in magnesium alloys. J. Magnes. Alloys 2022, 10, 1256–1267. [Google Scholar] [CrossRef]
- Nie, J.F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 2003, 48, 1009–1015. [Google Scholar] [CrossRef]
- Li, Z.T.; Qiao, X.G.; Xu, C.; Liu, X.Q.; Kamado, S.; Zheng, M.Y. Enhanced strength by precipitate modification in wrought Mg–Al–Ca alloy with trace Mn addition. J. Alloys Compd. 2020, 836, 154689. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Y.; Tong, M.; Pan, H.; Yang, C.; Luo, T.; Yang, Y. Enhancing tensile strength of Mg–Al–Ca wrought alloys by increasing Ca concentration. Vacuum 2020, 177, 109356. [Google Scholar] [CrossRef]
- Wang, J.; Meng, J.; Zhang, D.; Tang, D. Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Mater. Sci. Eng. A 2007, 456, 78–84. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.D.; Gu, J.H.; Gao, Y.; Tong, Y. Microstructure and mechanical properties of Mg-Gd-Sm-Zr alloy. Mater. Sci. Forum 2007, 546, 159–162. [Google Scholar] [CrossRef]
- Peng, Q.; Dong, H.; Wang, L.; Wu, Y.; Wang, L. Aging behavior and mechanical properties of Mg–Gd–Ho alloys. Mater. Charact. 2008, 59, 983–986. [Google Scholar] [CrossRef]
- Fan, R.; Wang, L.; Zhao, S.; Wang, L.; Guo, E. Strengthening of Mg Alloy with Multiple RE Elements with Ag and Zn Doping via Heat Treatment. Materials 2023, 16, 4155. [Google Scholar] [CrossRef]
Mg Alloy | Testing Media | Corrosion Rate (mm/year) |
---|---|---|
Mg-4Sn [100] | HBSS | 2.41 |
Mg-4Sn-1Ce [100] | HBSS | 2.00 |
Mg-4Sn-2Ce [100] | HBSS | 3.76 |
Mg-4Sn-4Ce [100] | HBSS | 5.28 |
MgCa4Zn1Gd1 [101] | Ringer’s solution | 1.86 |
MgCa4Zn1Gd2 [101] | Ringer’s solution | 0.62 |
MgCa4Zn1Gd3 [101] | Ringer’s solution | 1.48 |
Mg6Zn3Ag [102] | SBF | 22.01 |
Mg7Zn1Ag [102] | SBF | 28.83 |
Mg1Ca [102] | SBF | 31.24 |
Mg-0.6Al-0.5Mn-0.2Ca [103] | 3.5 wt.% NaCl solution | 1.0 |
Mg-0.6Al-0.5Mn-0.2Ca-0.3Ce [103] | 3.5 wt.% NaCl solution | 0.1 |
Mg-1.88Al-1.88Ca [104] | 0.01M NaCl | 0.47 |
Mg-3Al-2Ca-0.5Mn [104] | 0.01M NaCl | 0.23 |
Mg-3Ca-0.3Mn-0.01Zn [105] | Na2SO4 solution | 16.03 |
Mg-3.6Al-2.5Ca-0.5Mn0.01Zn [105] | Na2SO4 solution | 3.33 |
Mg-0.5Mn-0.6Ca [106] | 3.5 wt.% NaCl solution | 0.64 |
Mg-2Al-0.5Mn-0.7Ca [106] | 3.5 wt.% NaCl solution | 1.53 |
Mg-9Sn-0.5Mn-0.7Ca [106] | 3.5 wt.% NaCl solution | 2.02 |
Mg-4Zn-0.5Mn-0.7Ca [106] | 3.5 wt.% NaCl solution | 0.46 |
Mg-4Zn-0.7Zr-0.4Ce-0.1La-0.1Nd [107] | HBSS | 13.7 |
Mg-3Zn-1.3Zr-1.2Ce-0.5La-0.1Nd [107] | HBSS | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, H.M.R.; Ishtiaq, M.; Kang, H.-H.; Chaudry, U.M.; Jun, T.-S. A Critical Review on the Comparative Assessment of Rare-Earth and Non-Rare-Earth Alloying in Magnesium Alloys. Metals 2025, 15, 128. https://doi.org/10.3390/met15020128
Tariq HMR, Ishtiaq M, Kang H-H, Chaudry UM, Jun T-S. A Critical Review on the Comparative Assessment of Rare-Earth and Non-Rare-Earth Alloying in Magnesium Alloys. Metals. 2025; 15(2):128. https://doi.org/10.3390/met15020128
Chicago/Turabian StyleTariq, Hafiz Muhammad Rehan, Muhammad Ishtiaq, Hyun-Hak Kang, Umer Masood Chaudry, and Tea-Sung Jun. 2025. "A Critical Review on the Comparative Assessment of Rare-Earth and Non-Rare-Earth Alloying in Magnesium Alloys" Metals 15, no. 2: 128. https://doi.org/10.3390/met15020128
APA StyleTariq, H. M. R., Ishtiaq, M., Kang, H.-H., Chaudry, U. M., & Jun, T.-S. (2025). A Critical Review on the Comparative Assessment of Rare-Earth and Non-Rare-Earth Alloying in Magnesium Alloys. Metals, 15(2), 128. https://doi.org/10.3390/met15020128