Dynamic Strain Evolution around a Crack Tip under Steady- and Overloaded-Fatigue Conditions
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fatigue Crack Growth Tests
2.3. In Situ Neutron Diffraction Strain Measurements
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Elber, W. The Significance of Fatigue Crack Closure. In Damage Tolerance in Aircraft Structures; ASTM STP 486; American Society for Testing Materials: West Conshohocken, PA, USA, 1971; Volume 486, pp. 230–242. [Google Scholar]
- Gan, D.; Weertman, J. Crack closure and crack propagation rates in 7050 aluminum. Eng. Fract. Mech. 1981, 15, 87–106. [Google Scholar] [CrossRef]
- Shin, C.S.; Hsu, S.H. On the mechanisms and behavior of overload retardation in AISI-304 stainless-steel. Int. J. Fatigue 1993, 15, 181–192. [Google Scholar] [CrossRef]
- Sadananda, K.; Vasudevan, A.K.; Holtz, R.L.; Lee, E.U. Analysis of overload effects and related phenomena. Int. J. Fatigue 1999, 21, S233–S246. [Google Scholar] [CrossRef]
- Makabe, C.; Purnowidodo, A.; McEvily, A.J. Effects of surface deformation and crack closure on fatigue crack propagation after overloading and underloading. Int. J. Fatigue 2004, 26, 1341–1348. [Google Scholar] [CrossRef]
- Lee, S.Y.; Rogge, R.B.; Choo, H.; Liaw, P.K. Neutron diffraction measurements of residual stresses around a crack tip developed under variable-amplitude fatigue loadings. Fatigue Fract. Eng. Mater. Struct. 2010, 33, 822–831. [Google Scholar] [CrossRef]
- Jones, R.E. Fatigue crack growth retardation after single-cycle peak overload in Ti/6Al/4V titanium alloy. Eng. Fract. Mech. 1973, 5, 585–604. [Google Scholar] [CrossRef]
- Newman, J.C., Jr. A Crack-Closure Model for Predicting Fatigue Crack Growth under Aircraft Spectrum Loading; American Society for testing Materials: West Conshohocken, PA, USA, 1981; Volume 748, pp. 53–84. [Google Scholar]
- Suresh, S. Micromechanisms of fatigue crack growth retardation following overloads. Eng. Fract. Mech. 1983, 18, 577–593. [Google Scholar] [CrossRef]
- Wardclose, C.M.; Blom, A.F.; Ritchie, R.O. Mechanisms associated with transient fatigue crack-growth under variable-amplitude loading—An experimental and numerical study. Eng. Fract. Mech. 1989, 32, 613–638. [Google Scholar] [CrossRef]
- Dougherty, J.D.; Srivatsan, T.S.; Padovan, J. Fatigue crack propagation and closure behavior of modified 1070 steel: Experimental results. Eng. Fract. Mech. 1997, 56, 167–187. [Google Scholar] [CrossRef]
- Singh, K.D.; Khor, K.H.; Sinclair, I. Roughness- and plasticity-induced fatigue crack closure under single overloads: Finite element modelling. Acta Mater. 2006, 54, 4393–4403. [Google Scholar] [CrossRef]
- Bichler, C.H.; Pippan, R. Effect of single overloads in ductile metals: A reconsideration. Eng. Fract. Mech. 2007, 74, 1344–1359. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choo, H.; Liaw, P.K.; Oliver, E.C.; Paradowska, A.M. In situ neutron diffraction study of internal strain evolution around a crack tip under variable-amplitude fatigue-loading conditions. Scr. Mater. 2009, 60, 866–869. [Google Scholar] [CrossRef]
- Lee, S.Y.; Liaw, P.K.; Choo, H.; Rogge, R.B. A study on fatigue crack growth behavior subjected to a single tensile overload: Part I. An overload-induced transient crack growth micromechanism. Acta Mater. 2011, 59, 485–494. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choo, H.; Liaw, P.K.; An, K.; Hubbard, C.R. A study on fatigue crack growth behavior subjected to a single tensile overload: Part II. Transfer of stress concentration and its role in overload-induced transient crack growth. Acta Mater. 2011, 59, 495–502. [Google Scholar] [CrossRef]
- Lee, S.Y.; Huang, E.W.; Wu, W.; Liaw, P.K.; Paradowska, A.M. Development of crystallographic-orientation-dependent internal strains around a fatigue-crack tip during overloading and underloading. Mater. Charact. 2013, 79, 7–14. [Google Scholar] [CrossRef]
- Wheeler, O.E. Spectrum loading and crack growth. J. Basic Eng. 1972, 94, 181–186. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). Standard Test Method for Measurement of Fatigue Crack-Growth Rates; ASTM Standard E647-99; American Society for Testing Materials: West Conshohocken, PA, USA, 2000; pp. 591–630. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y.; Huang, E.-W.; Woo, W.; Yoon, C.; Chae, H.; Yoon, S.-G. Dynamic Strain Evolution around a Crack Tip under Steady- and Overloaded-Fatigue Conditions. Metals 2015, 5, 2109-2118. https://doi.org/10.3390/met5042109
Lee SY, Huang E-W, Woo W, Yoon C, Chae H, Yoon S-G. Dynamic Strain Evolution around a Crack Tip under Steady- and Overloaded-Fatigue Conditions. Metals. 2015; 5(4):2109-2118. https://doi.org/10.3390/met5042109
Chicago/Turabian StyleLee, Soo Yeol, E-Wen Huang, Wanchuck Woo, Cheol Yoon, Hobyung Chae, and Soon-Gil Yoon. 2015. "Dynamic Strain Evolution around a Crack Tip under Steady- and Overloaded-Fatigue Conditions" Metals 5, no. 4: 2109-2118. https://doi.org/10.3390/met5042109
APA StyleLee, S. Y., Huang, E. -W., Woo, W., Yoon, C., Chae, H., & Yoon, S. -G. (2015). Dynamic Strain Evolution around a Crack Tip under Steady- and Overloaded-Fatigue Conditions. Metals, 5(4), 2109-2118. https://doi.org/10.3390/met5042109