Structural Dynamics of Materials under Shock Compression Investigated with Synchrotron Radiation
Abstract
:1. Introduction
2. Synchrotron Facility and Experimental Setup
2.1. Laser Shock Compression
2.2. Time-Resolved X-ray Diffraction Setup
3. Structural Dynamics
3.1. Over-Compressed State in a Single Crystal of Cadmium Sulfide
3.2. Reversible Phase Transition in Zirconia Ceramics
3.3. Phase Transition Dynamics in Polycrystalline Bismuth
3.4. Intermediate Structural Deformation in Shock-Compressed Silica Glass
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Directing Matter and Energy: Five Challenges for Science and the Imagination, A Report from the Basic Energy Science Advisory Committee; U.S. Department of Energy: Washington, D.C., USA, 2007.
- Graham, R.A. Solids under High-Pressure Shock Compression; Springer-Verlag: New York, NY, USA, 1993; pp. 15–138. [Google Scholar]
- Wark, J.S.; Riley, D.; Woolsey, N.C.; Keihn, G.; Whitlock, R.R. Direct measurements of compressive and tensile strain during shock breakout by use of subnanosecond X-ray diffraction. J. Appl. Phys. 1990, 68, 4531–4534. [Google Scholar] [CrossRef]
- Kalantar, D.H.; Chandler, E.A.; Colvin, J.D.; Lee, R.; Remington, B.A.; Weber, S.V.; Hauer, A.; Wark, J.S.; Loveridge, A.; Failor, B.H.; et al. Transient X-ray diffraction used to diagnose shock compresses Si crystals on the Nova laser. Rev. Sci. Instrum. 1999, 70, 629–632. [Google Scholar]
- Hironaka, Y.; Yazaki, A.; Saito, F.; Nakamura, K.G.; Takenaka, H.; Yoshida, M. Evolving shock-wave profiles measured in a silicon crystal by picosecond time-resolved X-ray diffraction. Appl. Phys. Lett. 2000, 77, 1967–1969. [Google Scholar] [CrossRef]
- Johnson, Q.; Mitchell, A.C. First X-ray diffraction evidence for a phase transition during shock-wave compression. Phys. Rev. Lett. 1972, 29, 1369–1371. [Google Scholar] [CrossRef]
- Wark, J.S.; Whitelock, R.R.; Hauer, A.; Swain, J.E.; Solone, P.J. Shock launching in silicon studied with use of pulsed X-ray diffraction. Phys. Rev. B 1987, 35, 9391–9394. [Google Scholar] [CrossRef]
- Wark, J.S.; Whitelock, R.R.; Hauer, A.; Swain, J.E.; Solone, P.J. Subnanosecond X-ray diffraction from laser-shocked crystals. Phys. Rev. B 1989, 40, 5705–5714. [Google Scholar] [CrossRef]
- D’Almeida, T.; Gupta, Y.M. Real-time X-ray diffraction measurements of the phase transition in KCl shocked along [100]. Phys. Rev. Lett. 2000, 85, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Podurets, A.M.; Dorokhin, V.V.; Trunin, R.F. X-ray diffraction study of shock-induced phase transformations in zirconium and bismuth. High Temp. 2003, 41, 216–220. [Google Scholar] [CrossRef]
- Kalantar, D.H.; Belak, J.F.; Collins, G.W.; Colvin, J.D.; Davies, H.M.; Eggert, J.H.; Germann, T.C.; Hawreliak, J.; Holian, B.L.; Kadau, K.; et al. Direct observation of the α–ε transition in shock-compressed iron via nanosecond X-ray diffraction. Phys. Rev. Lett. 2005, 95, 075502:1–075502:4. [Google Scholar]
- Rygg, J.R.; Eggert, J.H.; Lazicki, A.E.; Coppari, F.; Hawreliak, J.A.; Hicks, D.G.; Smith, R.F.; Socrce, C.M.; Uphaus, T.M.; Yaakobi, B.; et al. Powder diffraction from solids in the terapascal regime. Rev. Sci. Instrum. 2012, 83, 113904:1–113904:7. [Google Scholar]
- Gorman, M.G.; Briggs, R.; McBride, E.E.; Higginbotham, A.; Arnold, B.; Eggert, J.H.; Fratanduro, D.E.; Galtier, E.; Lazicki, A.E.; Lee, H.J.; et al. Direct observation of melting in shock-compressed bismuth with femtosecond X-ray diffraction. Phys. Rev. Lett. 2015, 115, 095701:1–095701:5. [Google Scholar]
- Nagler, B.; Arnold, B.; Bouchard, G.; Boyce, R.F.; Boyce, R.M.; Callen, A.; Campell, M.; Curiel, R.; Galtier, E.; Garofoli, J.; et al. The matter in extreme conditions instrument at the linac coherent light source. J. Synchrotron Radiat. 2015, 22, 520–525. [Google Scholar] [PubMed]
- Schroppe, A.; Hoppe, R.; Meier, V.; Patommel, J.; Seiboth, F.; Ping, Y.; Hicks, D.G.; Beckwith, M.A.; Collins, G.W.; Higginbotham, A.; et al. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL. Sci. Rep. 2015. [Google Scholar] [CrossRef]
- Ichiyanagi, K.; Adachi, S.; Hironaka, Y.; Nakamura, K.G.; Sato, T.; Tomita, A.; Koshihara, S. Shock-induced lattice deformation of CdS single crystal by nanosecond time-resolved Laue diffraction. Appl. Phys. Lett. 2007, 91, 231918:1–231918:3. [Google Scholar] [CrossRef]
- Ichiyanagi, K.; Kawai, N.; Nozawa, S.; Sato, T.; Tomita, A.; Hoshino, M.; Nakamura, K.G.; Adachi, S.; Sasaki, Y.C. Shock-induced intermediate-range structural change of SiO2 glass in the nonlinear elastic region. Appl. Phys. Lett. 2012, 101, 181901:1–181901:4. [Google Scholar] [CrossRef]
- Hu, J.; Ichiyanagi, K.; Takahashi, H.; Koguchi, H.; Akasaka, T.; Kawai, N.; Nozawa, S.; Sato, T.; Sasaki, Y.; Adachi, S.; et al. Reversible phase transition in laser-shocked 3Y-TZP ceramics observed via nanosecond time-resolved X-ray diffraction. J. Appl. Phys. 2012, 111, 053526:1–053526:5, Erratum, J. Appl. Phys. 2013, 113, 039901:1. [Google Scholar]
- Hu, J.; Ichiyanagi, K.; Doki, T.; Goto, A.; Eda, T.; Norimatsu, K.; Harada, S.; Horiuchi, D.; Kabasawa, Y.; Hayashi, S.; et al. Complex structural dynamics of bismuth under laser-driven compression. Appl. Phys. Lett. 2013, 103, 161904:1–161904:5. [Google Scholar]
- Bridgman, P.W. Effects of high shearing stress combined with high hydrostatic pressure. Phys. Rev. 1935, 48, 825–847. [Google Scholar] [CrossRef]
- Bridgman, P.W. Shearing phenomena at high pressure of possible importance for geology. J. Geol. 1936, 44, 653–669. [Google Scholar] [CrossRef]
- Ahrens, T.J. Application of shock compression science to earth and planetary physics. In Shock Compression of Condensed Matter 1995; AIP Conference Proceedings No. 370; American Institute of Physics: Melville, NY, USA, 1995; pp. 3–8. [Google Scholar]
- Jayaraman, A. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 1983, 55, 65–108. [Google Scholar] [CrossRef]
- Loubetre, P.; Occelli, F.; LeToullec, R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature 2002, 416, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.H.; Isbel, W.M.; Maiden, C.J. Measurement of the very-high-pressure properties of materials using a light-gas gun. J. Appl. Phys. 1966, 37, 3493–3499. [Google Scholar] [CrossRef]
- Holmes, N.C.; Moriarty, J.A.; Gathers, G.R.; Nellis, W.J. The equation of state of platinum to 660 GPa (6.6 Mbar). J. Appl. Phys. 1989, 66, 2962–2967. [Google Scholar] [CrossRef]
- Moritoh, T.; Kawai, N.; Nakamura, K.G.; Kondo, K. Optimization of a compact two-stage light-gas gun aiming at a velocity of 9 km/s. Rev. Sci. Instrum. 2001, 72, 4270–4272. [Google Scholar] [CrossRef]
- Yokoo, M.; Nkamura, K.G.; Kondo, K.; Tange, Y.; Tuchiya, T. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa. Phys. Rev. B 2009, 80, 104114:1–104114:9. [Google Scholar] [CrossRef]
- Lee, I.-Y.S.; Hill, J.R.; Suzuki, H.; Dolott, D.D.; Baer, B.J.; Chronister, E.L. Molecular dynamics observed 60 ps behind a solid-state shock front. J. Chem. Phys. 1995, 103, 8313–8321. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Nakamura, K.G.; Kondo, K.; Yoshida, M. Time-resolved Raman spectroscopy of polytetrafluoroethylene under laser driven shock compression. Appl. Phys. Lett. 1999, 75, 947–949. [Google Scholar] [CrossRef]
- Matsuda, A.; Nakamura, K.G.; Kondo, K. Time-resolved Raman spectroscopy of benzene and cyclohexane under laser-driven shock compression. Phys. Rev. B 2002, 65, 174116:1–174116:4. [Google Scholar] [CrossRef]
- Matsuda, A.; Kondo, K.; Nakamura, K.G. Nanosecond rapid freezing of benzene under shock compression studied by coherent anti-Stokes Raman spectroscopy. J. Chem. Phys. 2006, 124, 054501:1–054501:4. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Oguchi, S.; Nakamura, K.G. Temperature measurement of carbon tetrachloride under laser shock compression using nanosecond time-resolved Raman spectroscopy. Chem. Phys. Lett. 2007, 445, 28–31. [Google Scholar] [CrossRef]
- Cauble, R.; Phillion, D.W.; Hoover, T.J.; Holmes, N.C.; Kilkenny, J.D.; Lee, R.W. Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 1992, 70, 2102–2105. [Google Scholar]
- Batani, D.; Balducci, A.; Beretta, D.; Bernarinello, A.; Löwer, T.; Koenig, M.; Benuzzi, A.; Faral, B.; Hall, T. Equation of sate data for gold in the pressure range <10 TPa. Phys. Rev. B 2000, 61, 9287–9294. [Google Scholar]
- Wakabayashi, K.; Hattori, S.; Tange, T.; Fujimoto, Y.; Yoshida, M.; Kozu, N.; Tanaka, K.A.; Ozaki, N.; Sasatani, Y.; Takenaka, H.; et al. Laser-induced shock compression of tantalum to 1.7 TPa. Jpn. J. Appl. Phys. 2000, 39, 1815–1816. [Google Scholar]
- Nagao, H.; Nakamura, K.G.; Kondo, K.; Ono, T.; Takamatsu, K.; Ozaki, N.; Tanaka, K.A.; Nagai, K.; Nakai, M.; Wakabayashi, K.; et al. Hugonipt measurement of diamond under shock compression up to 3 TPa. Phys. Plasma 2006, 13, 052705:1–052705:5. [Google Scholar]
- Cottet, F.; Hallouin, M.; Romain, J.P.; Fabbro, R.; Faral, B.; Pepin, H. Enhancement of a laser-driven shock wave up to 10 TPa by the impedance-match technique. Appl. Phys. Lett. 1985, 47, 678–680. [Google Scholar] [CrossRef]
- Trainor, R.J.; Shaner, J.W.; Auerbach, J.M.; Holmes, N.C. Ultrahigh-pressure laser-driven shock-wave experiments in aluminum. Phys. Rev. Lett. 1979, 42, 1154–1157. [Google Scholar] [CrossRef]
- Benuzzi, A.; Löwer, T.; Koenig, M.; Faral, B.; Batani, D.; Berretta, D.; Danson, C.; Pepler, D. Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10–40 Mbar pressure range. Phys. Rev. E 1996, 54, 2162–2165. [Google Scholar] [CrossRef]
- Devaux, D.; Fabbro, R.; Tollier, L.; Bartnicki, E. Generation of shock waves by laser-induced plasma in confined geometry. J. Appl. Phys. 1993, 74, 2268–2273. [Google Scholar] [CrossRef]
- Nozawa, S.; Adachi, S.; Takahashi, J.; Tazaki, R.; Guérin, L.; Daimon, M.; Tomita, A.; Sato, T.; Chollet, M.; Collet, E.; et al. Developing 100 ps-resolved X-ray structural analysis capabilities on beamline NW14A at the Photon Factory Advanced Ring. J. Synchrotron Radiat. 2007, 14, 313–319. [Google Scholar] [PubMed]
- Ichiyanagi, K.; Sato, T.; Nozawa, S.; Kim, K.H.; Lee, J.H.; Choi, J.; Tomita, A.; Ichikawa, H.; Adachi, S.; Koshihara, S. 100 ps time-resolve solution scattering utilizing a wide-bandwidth X-ray beam from multilayer optics. J. Synchrotron Radiat. 2009, 16, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Knudsson, M.D.; Gupta, Y.M.; Kunz, A.B. Transformation mechanism for the pressure-induced phase transition in shocked CdS. Phys. Rev. B 1999, 59, 11704–11715. [Google Scholar] [CrossRef]
- Knudsson, M.D.; Gupta, Y.M. Transformation kinetics for the shock wave induced phase transition in cadmium sulfide crystals. J. Appl. Phys. 2002, 91, 9561–9571. [Google Scholar] [CrossRef]
- Tang, Z.P.; Gupta, Y.M. Shock-induced phase transformation in cadmium sulfide in an elastomer. J. Appl. Phys. 1988, 64, 1827–1837. [Google Scholar] [CrossRef]
- Tang, Z.P.; Gupta, Y.M. Phase transition in cadmium sulfide single crystals shocked along c axis. J. Appl. Phys. 1997, 81, 7203–7212. [Google Scholar] [CrossRef]
- Bringa, E.M.; Rosolankova, K.; Rudd, R.E.; Remington, B.A.; Wark, J.S.; Duchaineau, M.; Kalantar, D.H.; Hawreliak, J.; Belak, J. Shock deformation of face-centered-cubic metals on subnanosecond timescales. Nat. Mater. 2006, 5, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Garvie, R.C.; Hannink, R.H.; Pascoe, R.T. Ceramic steel? Nature 1975, 258, 703–704. [Google Scholar] [CrossRef]
- Alzyab, B.; Perry, C.H.; Ingel, R.P. High-pressure phase transitions in zirconia and yttria-doped zirconia. J. Am. Ceram. Soc. 1987, 70, 760–765. [Google Scholar] [CrossRef]
- Ohtaka, O.; Kumi, S.; Ito, E. Synthesis and phase stability of cotunnite-type zirconia. J. Am. Ceram. Soc. 1988, 71, C448–C449. [Google Scholar] [CrossRef]
- Igarashi, Y.; Matsuda, A.; Akiyoshi, A.; Kondo, K.; Nakamura, K.G.; Niwase, K. Laser-shock compression of an yttria-doped tetragonal zirconia studied by Raman spectroscopy. J. Mater. Sci. 2004, 39, 4371–4372. [Google Scholar] [CrossRef]
- Yu, E.; Ponyatovsky, E.G. Phase Transformations of Elements under High Pressure; CRC: Boca Raton, FL, USA, 2005; p. 148. [Google Scholar]
- Pélissier, J.L.; Wetta, N. A model-potential approach for bismuth (I). Densification and melting curve calculation. Physica A 2001, 289, 459–478. [Google Scholar]
- McMahon, M.I.; Degtyareva, O.; Nelmes, R.J. Ba-IV-type incommensurate crystal structure in group-V metals. Phys. Rev. Lett. 2000, 85, 4896–4899. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.I.; Degtyareva, O.; Nelmes, R.J.; van Smaalen, S.; Palatinus, L. Incommensurate modulations of Bi-III and Sb-II. Phys. Rev. B 2007, 75, 184114:1–184114:5. [Google Scholar] [CrossRef]
- Inamura, Y.; Katayama, Y.; Utsumi, W.; Funakoshi, K. Transformation in the intermediate-range structure of SiO2 glass under high pressure and temperature. Phys. Rev. Lett. 2004, 93, 015501:1–015501:4. [Google Scholar] [CrossRef]
- Alexander, C.S.; Chhabildas, L.C.; Reinhart, W.D.; Templeton, D.W. Changes to the shock response of fused quartz due to glass modification. Int. J. Impact Eng. 2008, 35, 1376–1385. [Google Scholar] [CrossRef]
- Gibbons, R.V.; Ahrens, T.H. Shock metamorphism of silicate glasses. J. Geophys. Res. 1971, 76, 5489–5498. [Google Scholar] [CrossRef]
- Michell, A.C.; Nelis, W.J. Shock compression of aluminum, copper, and tantalum. J. Appl. Phys. 1970, 52, 3363–3374. [Google Scholar] [CrossRef]
- Barker, L.M.; Hollenbach, R.E. Shock-wave studies of PMMA, fused silica, and sapphire. J. Appl. Phys. 1970, 41, 4208–4226. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichiyanagi, K.; Nakamura, K.G. Structural Dynamics of Materials under Shock Compression Investigated with Synchrotron Radiation. Metals 2016, 6, 17. https://doi.org/10.3390/met6010017
Ichiyanagi K, Nakamura KG. Structural Dynamics of Materials under Shock Compression Investigated with Synchrotron Radiation. Metals. 2016; 6(1):17. https://doi.org/10.3390/met6010017
Chicago/Turabian StyleIchiyanagi, Kouhei, and Kazutaka G. Nakamura. 2016. "Structural Dynamics of Materials under Shock Compression Investigated with Synchrotron Radiation" Metals 6, no. 1: 17. https://doi.org/10.3390/met6010017
APA StyleIchiyanagi, K., & Nakamura, K. G. (2016). Structural Dynamics of Materials under Shock Compression Investigated with Synchrotron Radiation. Metals, 6(1), 17. https://doi.org/10.3390/met6010017