The Hot Deformation Activation Energy of 7050 Aluminum Alloy under Three Different Deformation Modes
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Flow Stress during the Three Hot Deformation Processes
3.2. Calculation of the Hot Deformation Activation Energy
4. Discussion
5. Conclusions
- By comparing the hot deformation activation energy values calculated using the classical and modified equations, the modified equation is found to be more suitable to calculate the hot deformation activation energy under the complex strain state.
- With the modified constitutive equation, the hot deformation activation energy is greater under the HSC deformation mode than under the HT and HC deformation modes. It is attributed to the fewer and different slip systems and intricate dislocation structures promoted in HSC deformation. Therefore, the significantly higher obstruction induced by their complicated interactions results in the higher activation energy in HSC deformation case.
- The effect of the strain state on the hot deformation activation energy can also be seen from the variation of the activation energy with the deformation conditions under the three deformation modes. It indicates that the complex strain state facilitates the increase activation energy under the same deformation conditions.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
HT | Hot Tensile |
HC | Hot Compression |
HSC | Hot Shear-Compression |
DRV | Dynamic Recovery |
DRX | Dynamic Recrystallization |
References
- Deschamps, A.; Brechet, Y. Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy. Mater. Sci. Eng. A 1998, 251, 200–207. [Google Scholar] [CrossRef]
- McQueen, H.J.; Spigarelli, S.; Kassner, M.; Evangelista, E. Hot Deformation and Processing of Aluminum Alloys; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Zhang, M.J.; Li, F.G.; Wang, S.Y.; Liu, C.Y. Characterization of hot deformation behavior of a P/M nickel-base superalloy using processing map and activation energy. Mater. Sci. Eng. A 2010, 527, 6771–6779. [Google Scholar]
- Sellars, C.M.; McTegart, W.J. On the mechanism of hot deformation. Mem. Sci. Rev. Met. 1966, 63, 731–746. [Google Scholar] [CrossRef]
- Reyes-Calderón, F.; Mejía, I.; Cabrera, J.M. Hot deformation activation energy (QHW) of austenitic Fe-22Mn-1.5Al-1.5Si-0.4C TWIP steels microalloyed with Nb, V, and Ti. Mater. Sci. Eng. A 2013, 562, 46–52. [Google Scholar] [CrossRef]
- Rokni, M.R.; Zarei-Hanzaki, A.; Roostaei, A.A.; Abolhasani, A. Constitutive base analysis of a 7075 aluminum alloy during hot compression testing. Mater. Des. 2011, 32, 4955–4960. [Google Scholar] [CrossRef]
- Jin, N.P.; Zhang, H.; Han, Y.; Wu, W.; Chen, J. Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature. Mater. Charact. 2009, 60, 530–536. [Google Scholar] [CrossRef]
- Sheppard, T.; Jackson, A. Constitutive equations for use in prediction of flow stress during extrusion of aluminum alloys. Mater. Sci. Technol. 1997, 13, 203–209. [Google Scholar] [CrossRef]
- Cerri, E.; Evangelista, E. Comparative hot workability of 7012 and 7075 alloys after different pretreatments. Mater. Sci. Eng. A 1995, 197, 181–198. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Di, H.S.; Wang, H.T.; Mao, K.; Ma, T.J.; Cao, Y. Hot deformation behavior of Ti-15-3 titanium alloy: A study using processing maps, activation energy map, and Zener-Hollomon parameter map. J. Mater. Sci. 2012, 47, 4000–4011. [Google Scholar] [CrossRef]
- Shi, C.J.; Mao, W.M.; Chen, X.-G. Evolution of activation energy during hot deformation of AA7150 aluminum alloy. Mater. Sci. Eng. A 2013, 571, 83–91. [Google Scholar] [CrossRef]
- Miller, M.P.; McDowell, D.L. Modeling large strain multiaxial effects in FCC polycrystals. Int. J. Plast. 1996, 12, 875–902. [Google Scholar] [CrossRef]
- Davenport, S.B.; Higginson, R.L. Strain path effects under hot working: An introduction. Mater. Pro. Technol. 2000, 98, 267–291. [Google Scholar] [CrossRef]
- Rittel, D.; Lee, S.; Ravichandran, G. A shear-compression specimen for large strain testing. Exper. Mech. 2002, 42, 58–64. [Google Scholar] [CrossRef]
- Masaki, K.; Sato, Y.S.; Maeda, M.; Kokawa, H. Experimental simulation of recrystallized microstructure in friction stir welded Al alloy using a plane-strain compression test. Scr. Mater. 2008, 58, 355–360. [Google Scholar] [CrossRef]
- Dieter, G.E. Mechanical Metallurgy, 3rd ed.; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- McQueen, H.J.; Ryan, N.D. Constitutive analysis in hot working. Mater. Sci. Eng. A 2002, 322, 43–63. [Google Scholar] [CrossRef]
- Medina, S.F.; Hernandez, C.A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Metar. 1996, 44, 137–148. [Google Scholar] [CrossRef]
- Caillard, D.; Martin, J.L. Thermally Activated Mechanisms in Crystal Plasticity; Pergamon Press: Oxford, UK, 2003. [Google Scholar]
- Honeycombe, R.W.K. The Plastic Deformation of Metals, 2nd ed.; Edward Arnold Ltd.: Baltimore, MD, USA, 1984. [Google Scholar]
Chemical Composition (wt. %) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Zr | Al |
0.12 | 0.15 | 2.0~2.6 | 0.1 | 1.9~2.6 | 0.04 | 5.7~6.7 | 0.06 | 0.08~0.15 | Bal. |
Deformation Mode | A | α = β/n1 (MPa−1) | n | S | Q1 (kJ·mol−1) |
---|---|---|---|---|---|
HT | 1.27 × 1020 | 0.0051 | 8.05 | 3.62 | 241.38 |
HC | 2.31 × 1019 | 0.0066 | 7.34 | 3.88 | 236.69 |
HSC | 1.67 × 1020 | 0.0054 | 8.59 | 3.36 | 239.93 |
Deformation Temperature (K) | Strain Rate (s−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
HT | HC | HSC | |||||||
0.01 | 1 | 10 | 0.01 | 1 | 10 | 0.01 | 1 | 10 | |
523 | 391.3 | 323.0 | 304.5 | 517.5 | 379.4 | 326.0 | 654.9 | 398.6 | 374.3 |
573 | 349.4 | 288.3 | 271.8 | 429.0 | 314.7 | 270.0 | 597.2 | 385.7 | 341.3 |
623 | 307.4 | 253.5 | 239.0 | 340.5 | 250.0 | 214.0 | 398.4 | 242.5 | 227.7 |
673 | 265.5 | 218.8 | 206.3 | 252.0 | 185.3 | 158.1 | 251.7 | 153.2 | 143.8 |
723 | 223.6 | 184.0 | 173.5 | 163.5 | 120.6 | 102.1 | 176.8 | 107.6 | 101.1 |
Average (Q2) | 266.7 | 268.2 | 314.3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, D.; Fu, R.; Li, Y. The Hot Deformation Activation Energy of 7050 Aluminum Alloy under Three Different Deformation Modes. Metals 2016, 6, 49. https://doi.org/10.3390/met6030049
Sang D, Fu R, Li Y. The Hot Deformation Activation Energy of 7050 Aluminum Alloy under Three Different Deformation Modes. Metals. 2016; 6(3):49. https://doi.org/10.3390/met6030049
Chicago/Turabian StyleSang, Deli, Ruidong Fu, and Yijun Li. 2016. "The Hot Deformation Activation Energy of 7050 Aluminum Alloy under Three Different Deformation Modes" Metals 6, no. 3: 49. https://doi.org/10.3390/met6030049
APA StyleSang, D., Fu, R., & Li, Y. (2016). The Hot Deformation Activation Energy of 7050 Aluminum Alloy under Three Different Deformation Modes. Metals, 6(3), 49. https://doi.org/10.3390/met6030049