RBF-Neural Network Applied to the Quality Classification of Tempered 100Cr6 Steel Cams by the Multi-Frequency Nondestructive Eddy Current Testing
Abstract
:1. Introduction
2. Theoretical Background
3. Materials
4. Methods
4.1. Impedance Acquisition Stage
4.2. Data Preprocessing Stage
4.3. Statistical Analysis Stage
4.4. Classification Stage
4.4.1. RBF-ANN Classifier
4.4.2. LDA Classifiers
4.4.3. Euclidean Distance Classifier
4.5. ROC Analysis Stage
5. Results
5.1. ANOVA Test Results
5.2. Classifiers Performance Results
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Khan, S.; Ali, F.; Khan, A.N.; Iqbal, M. Pearlite determination in plain carbon steel by eddy current method. J. Mater. Process. Technol. 2008, 200, 316–318. [Google Scholar] [CrossRef]
- Zergoug, M.; Lebaili, S.; Boudjellal, H.; Benchaala, A. Relation between mechanical microhardness and impedance variations in eddy current testing. NDT E Int. 2004, 37, 65–72. [Google Scholar] [CrossRef]
- Le Diraison, Y.; Joubert, P.-Y.; Placko, D. Characterization of subsurface defects in aeronautical riveted lap-joints using multi-frequency eddy current imaging. NDT E Int. 2009, 42, 133–140. [Google Scholar] [CrossRef]
- He, Y.; Luo, F.; Pan, M.; Weng, F.; Hu, X.; Gao, J.; Liu, B. Pulsed eddy current technique for defect detection in aircraft riveted structures. NDT E Int. 2010, 43, 176–181. [Google Scholar] [CrossRef]
- Yusa, N.; Janousek, L.; Rebican, M.; Chen, Z.; Miya, K.; Chigusa, N.; Ito, H. Detection of embedded fatigue cracks in Inconel weld overlay and the evaluation of the minimum thickness of the weld overlay using eddy current testing. Nucl. Eng. Des. 2006, 236, 1852–1859. [Google Scholar] [CrossRef]
- Yusa, N.; Machida, E.; Janousek, L.; Rebican, M.; Chen, Z.; Miya, K. Application of eddy current inversion technique to the sizing of defects in Inconel welds with rough surfaces. Nucl. Eng. Des. 2005, 235, 1469–1480. [Google Scholar] [CrossRef]
- Betta, G.; Ferrigno, L.; Laracca, M. GMR-based ECT instrument for detection and characterization of crack on a planar specimen: A hand-held solution. IEEE Trans. Instrum. Meas. 2012, 61, 505–512. [Google Scholar] [CrossRef]
- Bernieri, A.; Ferrigno, L.; Laracca, M.; Molinara, M. Crack shape reconstruction in eddy current testing using machine learning systems for regression. IEEE Trans. Instrum. Meas. 2008, 57, 1958–1968. [Google Scholar] [CrossRef]
- Simm, A.; Theodoulidis, T.; Poulakis, N.; Tian, G.Y. Investigation of the magnetic field response from eddy current inspection of defects. Int. J. Adv. Manuf. Technol. 2011, 54, 223–230. [Google Scholar] [CrossRef]
- Konoplyuk, S. Estimation of pearlite fraction in ductile cast irons by eddy current method. NDT E Int. 2010, 43, 360–364. [Google Scholar] [CrossRef]
- Mercier, D.; Lesage, J.; Decoopman, X.; Chicot, D. Eddy currents and hardness testing for evaluation of steel decarburizing. NDT E Int. 2006, 39, 652–660. [Google Scholar] [CrossRef]
- Wrzuszczak, M.; Wrzuszczak, J. Eddy current flaw detection with neural network applications. Measurement 2005, 38, 132–136. [Google Scholar] [CrossRef]
- Gros, X. NDT Data Fusion; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Wang, P.; Zhu, L.; Zhu, Q.; Ji, X.; Wang, H.; Tian, G.; Yao, E. An application of back propagation neural network for the steel stress detection based on Barkhausen noise theory. NDT E Int. 2013, 55, 9–14. [Google Scholar] [CrossRef]
- Sathiyasekar, K.; Thyagarajah, K.; Krishnan, A. Neuro fuzzy based predict the insulation quality of high voltage rotating machine. Expert Syst. Appl. 2011, 38, 1066–1072. [Google Scholar] [CrossRef]
- Silva, E.; Marinho, L.; Filho, P.; Leite, J.; Leite, J.; Fialho, W.; de Albuquerque, V.; Tavares, J. Classification of induced magnetic field signals for the microstructural characterization of sigma phase in duplex stainless steels. Metals 2016, 6, 164. [Google Scholar] [CrossRef]
- Lee, H.-T.; Wang, M.; Maev, R.; Maeva, E. A study on using scanning acoustic microscopy and neural network techniques to evaluate the quality of resistance spot welding. Int. J. Adv. Manuf. Technol. 2003, 22, 727–732. [Google Scholar] [CrossRef]
- Junyan, L.; Qingju, T.; Xun, L.; Yang, W. Research on the quantitative analysis of subsurface defects for non-destructive testing by lock-in thermography. NDT E Int. 2012, 45, 104–110. [Google Scholar] [CrossRef]
- Pérez-Benitez, J.A.; Padovese, L.R. Feature Selection and Neural Network for analysis of microstructural changes in magnetic materials. Expert Syst. Appl. 2011, 38, 10547–10553. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, D.; He, Y.; Zhou, J.; Codrington, J. Nondestructive and quantitative evaluation of wire rope based on radial basis function neural network using eddy current inspection. NDT E Int. 2012, 46, 7–13. [Google Scholar] [CrossRef]
- Xu, Y.; Ran, J.; Chen, H. Kohonen Neural Network Classification for Failure Process of Metallic Organic Coating in Corrosion Environment. Metals 2017, 7, 147. [Google Scholar]
- Nunes, T.M.; de Albuquerque, V.H.C.; Papa, J.P.; Silva, C.C.; Normando, P.G.; Moura, E.P.; Tavares, J.M.R.S. Automatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signals. Expert Syst. Appl. 2013, 40, 3096–3105. [Google Scholar] [CrossRef]
- Mix, P.E. Introduction to Nondestructive Testing: A Training Guide; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Davis, J.R. ASM Handbook: Nondestructive Evaluation and Quality Control; ASM International: Novelty, OH, USA, 1989; Volume 17. [Google Scholar]
- Qu, Z.; Zhao, Q.; Meng, Y. Improvement of sensitivity of eddy current sensors for nano-scale thickness measurement of Cu films. NDT E Int. 2014, 61, 53–57. [Google Scholar] [CrossRef]
- Dodd, C.; Deeds, W. Analytical Solutions to Eddy-Current Probe-Coil Problems. J. Appl. Phys. 1968, 39, 2829–2838. [Google Scholar] [CrossRef]
- Garcia-Martin, J.; Gomez-Gil, J.; Vazquez-Sanchez, E. Non-destructive techniques based on eddy current testing. Sensors 2011, 11, 2525–2565. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Zhao, Z.; Baines, R. The research of inhomogeneity in eddy current sensors. Sens. Actuators A Phys. 1998, 69, 148–151. [Google Scholar] [CrossRef]
- Deza, M.M.; Deza, E. Encyclopedia of Distances; Springer: Berlin, Germany, 2009. [Google Scholar]
- Scheffe, H. The Analysis of Variance; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 72. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Marco, V.R.; Young, D.M.; Turner, D.W. The Euclidean distance classifier: An alternative to the linear discriminant function. Commun. Stat. Simul. Comput. 1987, 16, 485–505. [Google Scholar] [CrossRef]
- Zhao, W.; Chellappa, R.; Nandhakumar, N. Empirical performance analysis of linear discriminant classifiers. In Proceedings of the 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, USA, 23–25 June 1998; pp. 164–169. [Google Scholar]
- Broomhead, D.S.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks; DTIC Document; Royal Signals and Radar Establishment Malvern (United Kingdom): London, UK, 1988. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1998; p. 842. [Google Scholar]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Webb, A.R. Statistical Pattern Recognition; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Adewale, I.D.; Tian, G.Y. Decoupling the influence of permeability and conductivity in pulsed eddy-current measurements. IEEE Trans. Magn. 2013, 49, 1119–1127. [Google Scholar] [CrossRef]
- Habiby, F.; Siddiqui, T.; Khan, S.; Khan, A. Austenite determination by eddy current measurements in a maraging steel. NDT E Int. 1992, 25, 145–146. [Google Scholar] [CrossRef]
- Garcia-Martin, J.; Martínez-Martínez, V.; Gomez-Gil, J. Heat-treatment classification of steels with nondestructive eddy current testing using neural networks. Dyna 2014, 89, 526–532. [Google Scholar]
- Chen, X.; Lei, Y. Electrical conductivity measurement of ferromagnetic metallic materials using pulsed eddy current method. NDT E Int. 2015, 75, 33–38. [Google Scholar] [CrossRef]
Active Coil | |||||
---|---|---|---|---|---|
f (kHz) | 0.1 | 0.12 | 1 | 10 | 100 |
L (mH) | 2.1415 | 2.1415 | 2.1308 | 2.1311 | 2.5888 |
XL (Ω) | 1.3455 | 1.6147 | 13.3882 | 133.9010 | 1626.5910 |
R (Ω) | 12.9030 | 12.9020 | 12.9000 | 12.8980 | 12.8930 |
Z (Ω) | 12.9730 | 13.0026 | 18.5918 | 134.5207 | 1626.6421 |
Compensating Coil | |||||
f (kHz) | 0.1 | 0.12 | 1 | 10 | 100 |
L (mH) | 2.1216 | 2.1187 | 2.1095 | 2.1071 | 2.5317 |
XL (Ω) | 1.3330 | 1.5975 | 13.2544 | 132.3930 | 1590.7140 |
R (Ω) | 12.4950 | 12.4980 | 12.5000 | 12.5010 | 12.5020 |
Z (Ω) | 12.5659 | 12.5997 | 18.2189 | 132.9819 | 1590.7632 |
Active/Compensating R, L Coil Variation | |||||
R variation | −3.1621% | −3.1313% | −3.1008% | −3.0780% | −3.0327% |
L variation | −0.9293% | −1.0647% | −0.9996% | −1.1262% | −2.2057% |
Impedance Component | p-Value |
---|---|
300R | 3.177 × 10−9 |
300X | 1.645 × 10−7 |
100R | 4.087 × 10−1 |
100X | 1.095 × 10−8 |
050R | 2.030 × 10−5 |
050X | 3.427 × 10−5 |
020R | 1.399 × 10−8 |
020X | 5.064 × 10−2 |
010R | 3.699 × 10−3 |
010X | 9.146 × 10−1 |
Classifier | Optimum Precision | AROC |
---|---|---|
RBF-ANN | 95% | 0.98 |
LDA-300R | 90% | 0.93 |
LDA-300X | 80% | 0.86 |
LDA-100R | 70% | 0.64 |
LDA-100X | 90% | 0.93 |
LDA-050R | 75% | 0.82 |
LDA-050X | 80% | 0.79 |
LDA-020R | 85% | 0.91 |
LDA-020X | 70% | 0.67 |
LDA-010R | 75% | 0.74 |
LDA-010X | 55% | 0.49 |
EDC | 90% | 0.96 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Martínez, V.; Garcia-Martin, J.; Gomez-Gil, J. RBF-Neural Network Applied to the Quality Classification of Tempered 100Cr6 Steel Cams by the Multi-Frequency Nondestructive Eddy Current Testing. Metals 2017, 7, 385. https://doi.org/10.3390/met7100385
Martínez-Martínez V, Garcia-Martin J, Gomez-Gil J. RBF-Neural Network Applied to the Quality Classification of Tempered 100Cr6 Steel Cams by the Multi-Frequency Nondestructive Eddy Current Testing. Metals. 2017; 7(10):385. https://doi.org/10.3390/met7100385
Chicago/Turabian StyleMartínez-Martínez, Víctor, Javier Garcia-Martin, and Jaime Gomez-Gil. 2017. "RBF-Neural Network Applied to the Quality Classification of Tempered 100Cr6 Steel Cams by the Multi-Frequency Nondestructive Eddy Current Testing" Metals 7, no. 10: 385. https://doi.org/10.3390/met7100385
APA StyleMartínez-Martínez, V., Garcia-Martin, J., & Gomez-Gil, J. (2017). RBF-Neural Network Applied to the Quality Classification of Tempered 100Cr6 Steel Cams by the Multi-Frequency Nondestructive Eddy Current Testing. Metals, 7(10), 385. https://doi.org/10.3390/met7100385