A Summary of Corrosion Properties of Al-Rich Solid Solution and Secondary Phase Particles in Al Alloys
Abstract
:1. Introduction
2. Electrochemical Properties of Al-Rich Solid Solutions
2.1. Al-Cu Solid Solution
2.2. Al-Mn Solid Solution
2.3. Al-Si Solid Solution
2.4. Al-Mg Solid Solution
2.5. Al-Zn Solid Solution
3. Electrochemical Properties of Secondary Phase Particles
3.1. Mg/Li-Containing Particles
Mg2Si—
Mg2Al3—
Al2CuMg—
Al2CuLi—
MgZn2—
3.2. Cu-Containing Particles
Al2Cu—
Al7Cu2Fe—
Al20Cu2Mn3—
3.3. Fe/Ti/Zr/Ta-Containing Particles
Al3Fe—
Al3Ta/Al3Zr/Al3Ti—
4. Research Outlook on Localized Galvanic Corrosion Arising between an Al-Rich Matrix and Particles
5. Summary
Acknowledgments
Conflicts of Interest
References
- Hatch, J.E. Aluminum: Properties and Physical Metallurgy; American Society for Metals: Metals Park, OH, USA, 1984. [Google Scholar]
- Polmear, I.J. Light Alloys: Metallurgy of the Light Metals, 3rd ed.; J. Wiley & Sons: Metals Park, OH, USA, 1981. [Google Scholar]
- Vargel, C. Corrosion of Aluminium, 1st ed.; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2004. [Google Scholar]
- Mondolfo, L.F. Aluminum Alloys: Structure and Properties; Butterworths: London, UK, 1976. [Google Scholar]
- Davis, J. Corrosion: Understanding the Basics; ASM International: Materials Park, OH, USA, 2000. [Google Scholar]
- Davis, J.R. Corrosion of Aluminum and Aluminum Alloys; ASM International: Materials Park, OH, USA, 1999. [Google Scholar]
- Buchheit, R.G. A compilation of corrosion potentials reported for intermetallic phases in aluminum-alloys. J. Electrochem. Soc. 1995, 142, 3994–3996. [Google Scholar] [CrossRef]
- Boag, A.; Hughes, A.E.; Wilson, N.C.; Torpy, A.; MacRae, C.M.; Glenn, A.M.; Musterb, T.H. How complex is the microstructure of AA2024-T3? Corros. Sci. 2009, 51, 1565–1568. [Google Scholar] [CrossRef]
- Revie, R.W.; Uhlig, H.H. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th ed.; Wiley-Interscience: Hoboken, NJ, USA, 2008. [Google Scholar]
- Frayne, C. Shreir’s Corrosion; Elsevier Science & Technology: London, UK, 2010. [Google Scholar]
- Birbilis, N.; Buchheit, R.G. Electrochemical characteristics of intermetallic phases in aluminum alloys—An experimental survey and discussion. J. Electrochem. Soc. 2005, 152, B140–B151. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Grant, R.P.; Hlava, P.F.; Mckenzie, B.; Zender, G.L. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J. Electrochem. Soc. 1997, 144, 2621–2628. [Google Scholar] [CrossRef]
- Baek, Y.; Frankel, G.S. Electrochemical quartz crystal microbalance study of corrosion of phases in AA2024. J. Electrochem. Soc. 2003, 150, B1–B9. [Google Scholar] [CrossRef]
- Wang, S.C.; Starink, M.J. Two types of S phase precipitates in Al-Cu-Mg alloys. Acta Mater. 2007, 55, 933–941. [Google Scholar] [CrossRef]
- Yoon, Y.; Buchheit, R.G. Dissolution behavior of Al2CuMg (S phase) in chloride and chromate conversion coating solutions. J. Electrochem. Soc. 2006, 153, B151–B155. [Google Scholar] [CrossRef]
- Xu, D.K.; Birbilis, N.; Rometsch, P.A. Effect of S-phase dissolution on the corrosion and stress corrosion cracking of an As-rolled Al-Zn-Mg-Cu alloy. Corrosion 2012, 68. [Google Scholar] [CrossRef]
- Cavanaugh, M.K.K.; Li, J.C.; Birbilis, N.; Buchheit, R.G.G. Electrochemical characterization of intermetallic phases common to aluminum alloys as a function of solution temperature. J. Electrochem. Soc. 2014, 161, C535–C543. [Google Scholar] [CrossRef]
- Yasakau, K.A.; Zheludkevich, M.L.; Lamaka, S.V.; Ferreira, M.G.S. Role of intermetallic phases in localized corrosion of AA5083. Electrochim. Acta 2007, 52, 7651–7659. [Google Scholar] [CrossRef]
- Scholes, F.H.; Hughes, A.E.; Jamieson, D.; Inoue, K.; Furman, S.A.; Muster, T.H.; Hardin, S.G.; Lau, D.; Harvey, T.G.; Corrigan, P.; et al. Interaction of Ce(dbp)3 with surface of aluminium alloy 2024-T3 using macroscopic models of intermetallic phases. Corros. Eng. Sci. Technol. 2009, 44, 416–424. [Google Scholar] [CrossRef]
- Dimitrov, N.; Mann, J.A.; Vukmirovic, M.; Sieradzki, K. Dealloying of Al2CuMg in alkaline media. J. Electrochem. Soc. 2000, 147, 3283–3285. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Montes, L.P.; Martinez, M.A.; Michael, J.; Hlava, P.F. The electrochemical characteristics of bulk-synthesized Al2CuMg. J. Electrochem. Soc. 1999, 146, 4424–4428. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Martinez, M.A.; Montes, L.P. Evidence for Cu ion formation by dissolution and dealloying the Al2CuMg intermetallic compound in rotating ring-disk collection experiments. J. Electrochem. Soc. 2000, 147, 119–124. [Google Scholar] [CrossRef]
- Buchheit, R.G. The Electrochemistry of θ(Al2Cu), S(Al2CuMg) and T(Al2CuLi) and localized corrosion and environment assisted cracking in high strength Al alloys. Mater. Sci. Forum 2000, 331–337, 1641–1646. [Google Scholar] [CrossRef]
- Leblanc, P.; Frankel, G.S. A study of corrosion and pitting initiation of AA2024-T3 using atomic force microscopy. J. Electrochem. Soc. 2002, 149, B239–B247. [Google Scholar] [CrossRef]
- Guillaumin, V.; Mankowski, G. Localized corrosion of 2024 T351 aluminium alloy in chloride media. Corros. Sci. 1999, 41, 421–438. [Google Scholar] [CrossRef]
- DeRose, J.A.; Suter, T.; Balkowiec, A.; Michalski, J.; Kurzydlowski, K.J.; Schmutz, P. Localised corrosion initiation and microstructural characterisation of an Al 2024 alloy with a higher Cu to Mg ratio. Corros. Sci. 2012, 55, 313–325. [Google Scholar] [CrossRef]
- Birbilis, N.; Cavanaugh, M.K.; Kovarik, L.; Buchheit, R.G. Nano-scale dissolution phenomena in Al-Cu-Mg alloys. Electrochem. Commun. 2008, 10, 32–37. [Google Scholar] [CrossRef]
- Schneider, O.; Ilevbare, G.O.; Kelly, R.G.; Scully, J.R. In situ confocal laser scanning microscopy of AA2024-T3 corrosion metrology. III. Underfilm corrosion of epoxy-coated AA2024-T3. J. Electrochem. Soc. 2007, 154, C397–C410. [Google Scholar] [CrossRef]
- Ilevbare, G.O.; Scully, J.R. Oxygen reduction reaction kinetics on chromate conversion coated Al-Cu, Al-Cu-Mg, and Al-Cu-Mn-Fe intermetallic compounds. J. Electrochem. Soc. 2001, 148, B196–B207. [Google Scholar] [CrossRef]
- Schneider, O.; Ilevbare, G.O.; Scully, J.R.; Kelly, R.G. In situ confocal laser scanning microscopy of AA2024-T3 corrosion metrology. II. Trench formation around particles. J. Electrochem. Soc. 2004, 151, B465–B472. [Google Scholar] [CrossRef]
- Ilevbare, G.O.; Schneider, O.; Kelly, R.G.; Scully, J.R. In situ confocal laser scanning microscopy of AA 2024-T3 corrosion metrology. I. Localized corrosion of particles. J. Electrochem. Soc. 2004, 151, B453–B464. [Google Scholar] [CrossRef]
- Ilevbare, G.O.; Scully, J.R. Mass-Transport-Limited oxygen reduction reaction on AA2024-T3 and selected intermetallic compounds in chromate-containing solutions. Corrosion 2001, 57, 134–152. [Google Scholar] [CrossRef]
- Li, J.; Hurley, B.; Buchheit, R. Effect of temperature on the localized corrosion of aa2024-t3 and the electrochemistry of intermetallic compounds during exposure to a dilute NaCl solution. Corrosion 2016, 72, 1281–1291. [Google Scholar] [CrossRef]
- Birbilis, N.; Buchheit, R.G. Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH. J. Electrochem. Soc. 2008, 155, C117–C126. [Google Scholar] [CrossRef]
- Bohni, H.; Suter, T.; Schreyer, A. Microtechniques and nanotechniques to study localized corrosion. Electrochim. Acta 1995, 40, 1361–1368. [Google Scholar] [CrossRef]
- Suter, T.; Muller, Y.; Schmutz, P.; von Trzebiatowski, O. Microelectrochemical studies of pit initiation on high purity and ultra high purity aluminum. Adv. Eng. Mater. 2005, 7, 339–348. [Google Scholar] [CrossRef]
- Suter, T.; Webb, E.G.; Bohni, H.; Alkire, R.C. Pit initiation on stainless steels in 1 M NaCl with and without mechanical stress. J. Electrochem. Soc. 2001, 148, B174–B185. [Google Scholar] [CrossRef]
- Suter, T.; Bohni, H. Microelectrodes for studies of localized corrosion processes. Electrochim. Acta 1998, 43, 2843–2849. [Google Scholar] [CrossRef]
- Birbilis, N.; Cavanaugh, M.K.; Buchheit, R.G. Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corros. Sci. 2006, 48, 4202–4215. [Google Scholar] [CrossRef]
- Birbilis, N.; Padgett, B.N.; Buchheit, R.G. Limitations in microelectrochemical capillary cell testing and transformation of electrochemical transients for acquisition of microcell impedance data. Electrochim. Acta 2005, 50, 3536–3544. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Hurley, B.; Luo, A.A.; Buchheit, R.G. Cu redistribution study during the corrosion of AZ91 using a rotating ring-disk collection experiment. Corros. Sci. 2016, 112, 760–764. [Google Scholar] [CrossRef]
- Li, J.; Hurley, B.; Buchheit, R. Microelectrochemical characterization of the effect of rare earth inhibitors on the localized corrosion of AA2024-T3. J. Electrochem. Soc. 2015, 162, C563–C571. [Google Scholar] [CrossRef]
- Li, J.; Birbilis, N.; Buchheit, R.G. Electrochemical assessment of interfacial characteristics of intermetallic phases present in aluminium alloy 2024-T3. Corros. Sci. 2015, 101, 155–164. [Google Scholar] [CrossRef]
- Rajan, V.; Neelakantan, L. Communication—Local electrochemical study using droplet cell microscopy on a rough surface. J. Electrochem. Soc. 2016, 163, C704–C706. [Google Scholar] [CrossRef]
- Rajan, V.; Neelakantan, L. On the corrosion behavior of Al2Cu by local electrochemical impedance spectroscopy using droplet cell microscopy. J. Solid State Electrochem. 2017, 21, 603–609. [Google Scholar] [CrossRef]
- Li, J.; Buchheit, R. Development of zinc ferrocyanide ion exchange compounds for corrosion-inhibiting and sensing pigments. Prog. Org. Coat. 2016, 104, 210–216. [Google Scholar] [CrossRef]
- Li, J.; Hurley, B.; Buchheit, R. Inhibition performance study of vanadate on AA2024-T3 at high temperature by SEM, FIB, Raman and XPS. J. Electrochem. Soc. 2015, 162, C219–C227. [Google Scholar] [CrossRef]
- Ralston, K.D.; Young, T.L.; Buchheit, R.G. Electrochemical evaluation of constituent intermetallics in aluminum alloy 2024-T3 exposed to aqueous vanadate inhibitors. J. Electrochem. Soc. 2009, 156, C135–C146. [Google Scholar] [CrossRef]
- Li, J. Electrochemical Characterization of Intermetallic Compounds in AA2024-T3 and Localized Corrosion Morphology of Al-Cu-Mg at Elevated Temperature; The Ohio State University: Columbus, OH, USA, 2015. [Google Scholar]
- Afseth, A.; Nordlien, J.H.; Scamans, G.M.; Nisancioglu, K. Filiform corrosion of binary aluminium model alloys. Corros. Sci. 2002, 44, 2529–2542. [Google Scholar] [CrossRef]
- Li, J.; Belinda, H.; Buchheit, R. Inhibition performance study of cerium inhibitors on the localized corrosion of AA2024-T3 as a function of temperature. J. Electrochem. Soc. 2016, 163, C845–C852. [Google Scholar] [CrossRef]
- Sugimoto, K.; Hoshino, K.; Kageyama, M.; Kageyama, S.; Sawada, Y. Stress corrosion cracking of aged Al4%Cu alloy in NaCl solution. Corros. Sci. 1975, 15, 709–720. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sawada, Y.; Morioka, S. Effects of alloying elements on the pitting corrosion of Aluminum. Trans. Jpn. Inst. Met. 1972, 13, 345–351. [Google Scholar] [CrossRef]
- Anderson, W.A.; Stumpf, H.C. Technical note: Effects of Manganese on the electrode or free corrosion potentials of Aluminum. Corrosion 1980, 36, 212–213. [Google Scholar] [CrossRef]
- Tohma, K. Intergranular corrosion mechanism in Al-Mn alloys. J. Jpn. Inst. Met. Mater. 1982, 46, 973–979. [Google Scholar]
- Niskanen, P.; Sanders, T.H.; Rinker, J.G.; Marek, M. Corrosion of aluminum alloys containing lithium. Corros. Sci. 1982, 22, 283–304. [Google Scholar] [CrossRef]
- Mazurkiewicz, B.; Piotrowski, A. The electrochemical behavior of the Al2Cu intermetallic compound. Corros. Sci. 1983, 23, 697–707. [Google Scholar] [CrossRef]
- Fleming, K.M.; Zhu, A.; Scully, J.R. Corrosion of AA6061 brazed with an Al-Si alloy: Effects of Si on metallurgical and corrosion behavior. Corrosion 2012, 68, 1126–1145. [Google Scholar] [CrossRef]
- Buchheit, R.G. The Electrochemical behavior of the Al3Ta intermetallic compound and pitting in two-phase Al-Ta alloys. J. Electrochem. Soc. 1995, 142, 51–58. [Google Scholar] [CrossRef]
- Zeng, F.L.; Wei, Z.L.; Li, J.F.; Li, C.X.; Tan, X.; Zhang, Z.; Zheng, Z.Q. Corrosion mechanism associated with Mg2Si and Si particles in Al-Mg-Si alloys. Trans. Nonferr. Met. Soc. China 2011, 21, 2559–2567. [Google Scholar] [CrossRef]
- Gupta, R.K.; Sukiman, N.L.; Fleming, K.M.; Gibson, M.A.; Birbilis, N. Electrochemical behavior and localized corrosion associated with Mg2Si particles in Al and Mg alloys. ECS Electrochem. Lett. 2012, 1, C1–C3. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Moran, J.P.; Stoner, G.E. Electrochemical behavior of the T1(Al2CuLi) intermetallic compound and its role in localized corrosion of Al-2%Li-3%Cu alloys. Corrosion 1994, 50, 120–130. [Google Scholar] [CrossRef]
- Li, J.F.; Li, C.X.; Peng, Z.W.; Chen, W.J.; Zheng, Z.Q. Corrosion mechanism associated with T1 and T2 precipitates of Al-Cu-Li alloys in NaCl solution. J. Alloys Compd. 2008, 460, 688–693. [Google Scholar] [CrossRef]
- Leard, R.R.; Buchheit, R.G. Electrochemical characterization of copper-bearing intermetallic compounds and localized corrosion of Al-Cu-Mg-Mn alloy 2024. Alum. Alloys 2002, 396, 1491–1496. [Google Scholar] [CrossRef]
- Lyndon, J.A.; Gupta, R.K.; Gibson, M.A.; Birbilis, N. Electrochemical behaviour of the β-phase intermetallic (Mg2Al3) as a function of pH as relevant to corrosion of aluminium-magnesium alloys. Corros. Sci. 2013, 70, 290–293. [Google Scholar] [CrossRef]
- Montagné, P.; Tillard, M. Mg2Al3, a complex and disordered intermetallic compound as anode material for metal-air batteries. J. Solid State Electrochem. 2015, 19, 685–695. [Google Scholar] [CrossRef]
- Rosalbino, F.; Carlini, R.; Parodi, R.; Zanicchi, G.; Scavino, G. Investigation of passivity and its breakdown on Fe3Al-Si and Fe3Al-Ge intermetallics in chloride-containing solution. Corros. Sci. 2014, 85, 394–400. [Google Scholar] [CrossRef]
- Seri, O.; Imaizumi, M. The dissolution of FeAl3 intermetallic compound and deposition on aluminum in AlCl3 solution. Corros. Sci. 1990, 30, 1121–1133. [Google Scholar] [CrossRef]
- Yao, C.; Zhu, T.; Chen, W.; Tay, S.; Gao, W. Corrosion behaviour of MgZn2 alloy using electrochemical methods. In Proceedings of the 8th Structural Integrity and Fracture, Melbourne, Australia, 11–12 July 2013.
- Byun, J.M.; Yu, J.M.; Kim, D.K.; Kim, T.-Y.; Jung, W.-S.; Kim, Y.D. Corrosion behavior of Mg2Zn11 and MgZn2 single phases. J. Korean Inst. Met. Mater. 2013, 51. [Google Scholar] [CrossRef]
- Li, J.F.; Zheng, Z.Q.; Li, S.C.; Chen, W.J.; Ren, W.D.; Zhao, X.S. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys. Corros. Sci. 2007, 49, 2436–2449. [Google Scholar] [CrossRef]
- Kim, Y.; Buchheit, R.G. A characterization of the inhibiting effect of Cu on metastable pitting in dilute Al-Cu solid solution alloys. Electrochim. Acta 2007, 52, 2437–2446. [Google Scholar] [CrossRef]
- Kim, Y.; Buchheit, R.G.; Kotula, P.G. Effect of alloyed Cu on localized corrosion susceptibility of Al-Cu solid solution alloys-Surface characterization by XPS and STEM. Electrochim. Acta 2010, 55, 7367–7375. [Google Scholar] [CrossRef]
- Galvele, J.R.; de De Micheli, S.M. Mechanism of intergranular corrosion of Al-Cu alloys. Corros. Sci. 1970, 10, 795–807. [Google Scholar] [CrossRef]
- Ramgopal, T.; Frankel, G.S. Role of alloying additions on the dissolution kinetics of aluminum binary alloys using artificial crevice electrodes. Corrosion 2001, 57, 702–711. [Google Scholar] [CrossRef]
- Muller, I.L.; Galvele, J.R. Pitting potential of high purity binary Aluminum alloys—I. Al-Cu alloys. Pitting and intergranular corrosion. Corros. Sci. 1977, 17, 179–189. [Google Scholar] [CrossRef]
- Dimitrov, N.; Mann, J.A.; Sieradzki, K. Cu redistribution during corrosion of aluminum alloys. J. Electrochem. Soc. 1999, 146, 98–102. [Google Scholar] [CrossRef]
- Scully, J.R.; Peebles, D.E.; Romig, A.D.; Frear, D.R.; Hills, C.R. Metallurgical factors influencing the corrosion of aluminum, Al-Cu, and Al-Si alloy thin films in dilute hydrofluoric solution. Metall. Trans. A 1992, 23, 2641–2655. [Google Scholar] [CrossRef]
- Nam, S.W.; Lee, D.H. The effect of Mn on the mechanical behavior of Al alloys. Met. Mater. 2000, 6, 13–16. [Google Scholar] [CrossRef]
- Reding, J.T.; Newport, J.J. Aluminum anodes in sea water. Mater. Prot. 1966, 5, 15–18. [Google Scholar]
- Zamin, M. The Role of Mn in the Corrosion Behavior of Al-Mn Alloys. Corrosion 1981, 37, 627–632. [Google Scholar] [CrossRef]
- Larsen, M.H.; Walmsley, J.C.; Lunder, O.; Nisancioglu, K. Effect of excess silicon and small copper content on intergranular corrosion of 6000-series Aluminum alloys. J. Electrochem. Soc. 2010, 157, C61. [Google Scholar] [CrossRef]
- Mizuno, K.; Nylund, A.; Olefjord, I. Surface reactions during pickling of an aluminium-magnesium-silicon alloy in phosphoric acid. Corros. Sci. 2001, 43, 381–396. [Google Scholar] [CrossRef]
- Zhang, R.; Knight, S.P.; Holtz, R.L.; Goswami, R.; Davies, C.H.J.; Birbilis, N. A survey of sensitization in 5xxx series Aluminum alloys. Corrosion 2016, 72, 144–159. [Google Scholar] [CrossRef]
- Yan, J.; Heckman, N.M.; Velasco, L.; Hodge, A.M. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries. Sci. Rep. 2016, 6, 26870. [Google Scholar] [CrossRef] [PubMed]
- Ekuma, C.E.; Idenyi, N.E.; Umahi, A.E. The Effects of Zinc Additions on the corrosion susceptibility of Aluminium alloys in various tetraoxosulphate (VI) acid environments. J. Appl. Sci. 2007, 7, 237–241. [Google Scholar]
- Davis, J.R. Alloying: Understanding the Basics; ASM International: Materials Park, OH, USA, 2001. [Google Scholar]
- Zakharov, M.V.; Rogel’berg, L.N. Effect of zinc on the susceptibility of aluminum-magnesium alloys to stress corrosion. Met. Sci. Heat Treat. 1963, 5, 692–695. [Google Scholar] [CrossRef]
- Shreir, L.L.; Jarman, R.A.; Burstein, G.T. Corrosion—Volume 1. Metal/Environment Reactions; Newnes-Butterworth: London, UK, 1994. [Google Scholar]
- Chen, G.S.; Gao, M.; Wei, R.P. Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3. Corrosion 1996, 52, 8–15. [Google Scholar] [CrossRef]
- Diler, E.; Lescop, B.; Rioual, S.; Vien, G.N.; Thierry, D.; Rouvellou, B. Initial formation of corrosion products on pure zinc and MgZn2 examinated by XPS. Corros. Sci. 2014, 79, 83–88. [Google Scholar] [CrossRef]
- Oh, M.-S.; Kim, S.-H.; Kim, J.-S.; Lee, J.-W.; Shon, J.-H.; Jin, Y.-S. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure. Met. Mater. Int. 2016, 22, 26–33. [Google Scholar] [CrossRef]
- Hughes, A.E.; MacRae, C.; Wilson, N.; Torpy, A.; Muster, T.H.; Glenn, A.M. Sheet AA2024-T3: A new investigation of microstructure and composition. Surf. Interface Anal. 2010, 42, 334–338. [Google Scholar] [CrossRef]
- Ketcham, S.J.; Haynie, F.H. Electrochemical behavior of aluminum alloys susceptible to intergranular corrosion. I. effect of cooling elate on structure and electrochemical behavior in 2024 Aluminum alloy. Corrosion 1963, 19, 242t–246t. [Google Scholar] [CrossRef]
- Nisancioglu, K. Electrochemical-behavior of Aluminum-base intermetallics containing iron. J. Electrochem. Soc. 1990, 137, 69–77. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Boger, R.K. Cu Redistribution and Surface Enrichment Due to Dissolution of Al-Cu Alloys. In Proceedings of the Localized Corrosion Proceedings Research Top Symposium Corrosion, Houston, TX, USA, 2001.
- Vukmirovic, M.B.; Dimitrov, N.; Sieradzki, K. Dealloying and corrosion of Al alloy 2024-T3. J. Electrochem. Soc. 2002, 149, B428–B439. [Google Scholar] [CrossRef]
- Smith, A.J.; Tran, T.; Wainwright, M.S. Kinetics and mechanism of the preparation of Raney® copper. J. Appl. Electrochem. 1999, 29, 1085–1094. [Google Scholar] [CrossRef]
- Seri, O. The Effect of Nacl Concentration on the corrosion behavior of Aluminum containing iron. Corros. Sci. 1994, 36, 1789–1803. [Google Scholar] [CrossRef]
- Pao, P.S.; Feng, C.R.; Gill, S.J. Corrosion fatigue crack initiation in aluminum alloys 7075 and 7050. Corrosion 2000, 56, 1022–1031. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Maestas, L.M.; Sorensen, N.R. The electrochemical behavior of the Al3Fe intermetallic compound and localized corrosion of impure 1100 Al. In 183rd Electrochemistry Society Meeting; Electrochemical Society: Pennington, NJ, USA; Honolulu, HI, USA, 1993; pp. 187–198. [Google Scholar]
- Scully, J.R.; Knight, T.O.; Buchheit, R.G.; Peebles, D.E. Electrochemical characteristics of the Al2Cu, Al3Ta and Al3Zr intermetallic phases and their relevancy to the localized corrosion of Al alloys. Corros. Sci. 1993, 35, 185–195. [Google Scholar] [CrossRef]
- Skar, J.I. Corrosion and corrosion prevention of magnesium alloys. Mater. Corros. 1999, 50, 2–6. [Google Scholar] [CrossRef]
- Song, G.; Johannesson, B.; Hapugoda, S.; StJohn, D. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corros. Sci. 2004, 46, 955–977. [Google Scholar] [CrossRef]
- Kodentsov, A.; Bastin, G.; van Loo, F.J. The diffusion couple technique in phase diagram determination. J. Alloys Compd. 2001, 320, 207–217. [Google Scholar] [CrossRef]
- Zhao, J.-C.; Jackson, M.R.; Peluso, L.A.; Brewer, L.N. A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM 2002, 54, 42–45. [Google Scholar] [CrossRef]
- Zhao, J.-C.; Jackson, M.R.; Peluso, L.A.; Brewer, L.N. A diffusion multiple approach for the accelerated design of structural materials. MRS Bull. 2011, 27, 324–329. [Google Scholar] [CrossRef]
- Buchheit, R.G.; Birbilis, N. Electrochemical microscopy: An approach for understanding localized corrosion in microstructurally complex metallic alloys. Electrochim. Acta 2010, 55, 7853–7859. [Google Scholar] [CrossRef]
Stoichiometry | Ecorr, VSCE | Epit, VSCE | icorr, μA/cm2 | Environment | Reference |
---|---|---|---|---|---|
Al | −0.679 | −0.545 | N/A | Aerated 0.01 M NaCl | [11] |
−1.01 | −0.56 | 1.5 | 0.5 M NaCl, pH 9.17 | [48] | |
−0.823 | −0.610 | 3.9 | Aerated 0.1 M NaCl | [11] | |
−0.849 | −0.696 | N/A | Aerated 0.6 M NaCl | [11] | |
−0.823 | −0.568 | 0.87 | Aerated 0.1 M NaCl, 10 °C | [49] | |
−0.942 | −0.637 | 1.09 | Aerated 0.1 M NaCl, 30 °C | [49] | |
−0.99 | −0.67 | 1.73 | Aerated 0.1 M NaCl, 50 °C | [49] | |
−1.22 | −0.673 | 1.65 | Aerated 0.1 M NaCl, 70 °C | [49] | |
Al-1%Cu, solid solution | −0.69 | N/A | N/A | Aerated 5 wt. % NaCl, pH 3.1–3.3 | [50] |
Al-2%Cu | −0.813 | −0.447 | N/A | Aerated 0.01 M NaCl | [11] |
−0.672 | −0.471 | 1.3 | Aerated 0.1 M NaCl | [11] | |
−0.744 | −0.529 | N/A | Aerated 0.6 M NaCl | [11] | |
Al-4%Cu | −0.856 | −0.389 | 0.94 | Aerated 0.1 M NaCl, 10 °C | [33] |
−0.894 | −0.380 | 0.94 | Aerated 0.1 M NaCl, 30 °C | [33] | |
−0.813 | −0.400 | 1.08 | Aerated 0.1 M NaCl, 50 °C | [33] | |
−0.784 | −0.352 | 2.97 | Aerated 0.1 M NaCl, 70 °C | [33] | |
−0.985 | −0.458 | 0.31 | 0.1 M NaCl + 4 mM CeCl3, 30 °C | [51] | |
−0.950 | −0.396 | 0.32 | 0.1 M NaCl + 4 mM LaCl3, 30 °C | [42] | |
−0.91 | −0.45 | 0.22 | 0.1 M NaCl + 4 mM PrCl3, 30 °C | [42] | |
−0.877 | −0.21 | 0.11 | 0.1 M NaCl + 1 mM K2CrO4, 30 °C | [42] | |
−1.05 | −0.307 | 0.46 | 0.1 M NaCl + 4 mM CeCl3, 50 °C | [51] | |
−1.05 | −0.397 | 1.6 | 0.1 M NaCl + 4 mM CeCl3, 70 °C | [51] | |
−0.583~−0.589 | N/A | N/A | De-aerated 1 M NaCl + 1wt. %H2O2 + 0.1% proof stress | [52] | |
−0.762~−0.606 | N/A | N/A | 0.02 d to 10 day aging at 170 °C, de-aerated 1 M NaCl + 1wt. %H2O2 + 0.1% proof stress | [52] | |
−1.18 a | −0.6 | N/A | 0.1 M NaCl, pH 10 | [52] | |
−1.1 a | −0.75~−0.69 | N/A | 0.01 d to 10 day aging at 170 °C, 0.1 M NaCl, pH 10 | [52] | |
−0.87 | −0.47 | 2.9 | 0.5 M NaCl, pH 9.17 | [48] | |
−1.18 | −0.38 | 0.54 | 0.5 M NaCl + 10 mM NaVO3, pH 9.17 | [48] | |
−0.750 | −0.418 | N/A | Aerated 0.01 M NaCl | [11] | |
−0.602 | −0.406 | 2.3 | Aerated 0.1 M NaCl | [11] | |
−0.642 | −0.465 | N/A | Aerated 0.6 M NaCl | [11] | |
Al-xCu (x = 0.011~8.15 wt. %) | N/A | −0.76~−0.649 a | N/A | 1 M NaCl, pH 10 | [53] |
Al-3%Mg | −0.78 | N/A | N/A | Solid solution, aerated 5 wt. % NaCl pH 3.1–3.3 | [50] |
Al-xMg (x = 0.01~4.51 wt. %) | N/A | −0.758~−0.82 a | N/A | 1 M NaCl, pH 10 | [53] |
Al-1%Mn | −0.73 | N/A | N/A | Solid solution, aerated 5 wt. % NaCl pH 3.1–3.3 | [50] |
Al-xMn (x = 0~2 wt. %) | −0.944~−0.812 a | N/A | N/A | Solid solution, in 53 g/L NaCl + 3 g/L H2O2 | [54] |
Al-xMn (x = 0~2 wt. %) | −1.01~−1.14 a | −0.70~−0.76 | N/A | De-aerated AlCl3, pH 2.5 | [55] |
Al-xMn (x = 0.011~4.94 wt. %) | N/A | −0.76~−0.718 a | N/A | 1 M NaCl, pH 10 | [53] |
Al-0.1 Li, solid solution | −1.067 | −0.727 | N/A | Deaerated agitated 3.5% NaCl | [56] |
Al-2.85 Li (0.25~24 h aging at 200 °C) | −1.13~−1.146 | −0.692~−0.725 | N/A | Deaerated agitated 3.5% NaCl | [56] |
Al-2.78Li-0.32 Mn, (0.25~336 h aging at 200 °C) | −1.193~−1.36 | −0.693~−0.721 | N/A | Deaerated agitated 3.5% NaCl | [56] |
Al-2.76Li-0.14Zr (0.25~336 h aging at 200 °C) | −1.61~−1.41 | −0.765~−0.705 | N/A | Deaerated agitated 3.5% NaCl | [56] |
Al-0.04Fe | −0.76 | N/A | N/A | Solid solution, aerated s 5 wt. % NaCl pH 3.1–3.3 | [50] |
Al-xFe (x = 0.013~3.38 wt. %) | N/A | −0.77~−0.758 a | N/A | 1 M NaCl, pH 10 | [53] |
Al-xSi (x = 0.05~1.66 wt. %) | N/A | −0.75~−0.7 a | N/A | 1 M NaCl, pH 10 | [53] |
Al2Cu (θ) | −0.592 | −0.434 | N/A | Aerated 0.01 M NaCl | [11] |
−0.665 | −0.544 | 7.3 | Aerated 0.1 M NaCl | [11] | |
−0.695 | −0.652 | N/A | Aerated 0.6 M NaCl | [11] | |
−0.53 | −0.42 | 4.9 | Aerated 0.1 M NaCl, 30 °C | [33,42] | |
−0.57 | −0.53 | 11 | 0.1 M NaCl + 4 mM CeCl3, 30 °C | [42,51] | |
−0.557 | −0.467 | 0.9 | 0.1 M NaCl + 4 mM CeCl3, 50 °C | [51] | |
−0.578 | −0.495 | 1.6 | 0.1 M NaCl + 4 mM CeCl3, 70 °C | [51] | |
−0.53 | −0.5 | 13 | 0.1 M NaCl + 4 mM PrCl3, 30 °C | [42] | |
−0.55 | −0.5 | 13 | 0.1 M NaCl + 4 mM LaCl3, 30 °C | [42] | |
−0.52 | −0.33 | 0.13 | 0.1 M NaCl + 1 mM K2CrO4, 30 °C | [42] | |
−0.45 | No | 1.82 | 0.1 M NaCl, 10 °C | [33] | |
−0.57 | −0.43 | 8.35 | 0.1 M NaCl, 50 °C | [33] | |
−0.56 | −0.487 | 27.4 | 0.1 M NaCl, 70 °C | [33] | |
−0.546 | −0.458 | −38 c | 0.1 M NaCl, pH 2.5 | [34] | |
−0.665 | −0.544 | −41 c | 0.1 M NaCl, pH 6 | [34] | |
−0.739 | −0.408 | −110 c | 0.1 M NaCl, pH 10 | [34] | |
−0.743 | −0.407 | −38 c | 0.1 M NaCl, pH 12.5 | [34] | |
−0.46 a | N/A | N/A | Deaerated 0.5 M H2SO4, pH 0.4 | [57] | |
−0.5 a | N/A | N/A | Deaerated 0.5 M NaSO4 + 0.005 H2SO4, pH 2.8 | [57] | |
−0.68 a | N/A | N/A | Deaerated 0.5 M Na2SO4, pH 7.7 | [57] | |
−0.93 a | N/A | N/A | Deaerated 0.5 M Na2SO4 + 0.01 NaOH, pH 10.4 | [57] | |
−1.16 a | N/A | N/A | Deaerated 1 M NaOH, pH 13.8 | [57] | |
−0.625 | No | N/A | De-aerated 1 M NaCl | [52] | |
−0.7 a | N/A | N/A | Aerated 0.6 M NaCl | [58] | |
−0.65 a | N/A | N/A | 0.51 M NaCl, pH 1.2 | [58] | |
−0.59 | −0.44 | 13 | 0.5 M NaCl, pH 9.17 | [48] | |
−0.91 | −0.34 | 4.5 | 0.5 M NaCl + 10 mM NaVO3, pH 9.17 | [48] | |
−0.405 a | N/A | N/A | 0.1 M Na2SO4 + 0.005 M NaCl, pH 6 | [31] | |
−0.436 a | N/A | N/A | 0.1 M Na2SO4 + 0.005 M NaCl, pH 3 | [31] | |
−0.374 a | N/A | N/A | 0.1 M Na2SO4 + 0.005 M NaCl, pH 10 | [31] | |
Al3Ta | −0.346~−0.386 | N/A | N/A | 0.1 M C4H4O6 (pH 2), 0.1 M H3BO4 (pH 4.8), 0.1 M H3BO4 + 0.1M Na2B4O7 (pH 6.9) | [59] |
−0.82 | N/A | N/A | 0.1M Na2B4O7 (pH 9.3) | [59] | |
−1.251 | N/A | N/A | 0.1M Na2B4O7 + 0.1 M NaOH (pH 12) | [59] | |
Al3Zr | −0.752 | −0.223 | N/A | Aerated 0.01 M NaCl | [11] |
−0.776 | −0.275 | 2.5 | Aerated 0.1 M NaCl | [11] | |
−0.801 | −0.346 | N/A | Aerated 0.6 M NaCl | [11] | |
Al3Ti | −0.609 | −0.139 | N/A | 0.1 M NaCl + 1 mM K2CrO4, 30 °C | [42] |
−0.620 | −0.232 | N/A | Aerated 0.01 M NaCl | [11] | |
−0.603 | −0.225 | 0.56 | Aerated 0.1 M NaCl | [11] | |
−0.799 | −0.646 | N/A | Aerated 0.6 M NaCl | [11] | |
Mg2Si | −1.16 | N/A | 1.28 | 3.5% NaCl solution | [60] |
−1.15 a | N/A | N/A | Aerated 0.6 M NaCl | [58] | |
−1.4 a | N/A | N/A | 0.51 M NaCl, pH 1.2 | [58] | |
−1.03 a | −0.273 a | N/A | 0.01 M NaCl, pH 13 | [61] | |
−1.18 a | No | N/A | 0.01 M NaCl, pH 6 | [61] | |
−1.23 a | No | N/A | 0.01 M NaCl, pH 2 | [61] | |
−1.355 | No | N/A | Aerated 0.01 M NaCl | [11] | |
−1.538 | No | 7.7 | Aerated 0.1 M NaCl | [11] | |
−1.536 | No | N/A | Aerated 0.6 M NaCl | [11] | |
−1.408 | No | 3400 c | 0.1 M NaCl, pH 2.5 | [34] | |
−1.538 | No | 340 c | 0.1 M NaCl, pH 6 | [34] | |
−1.43 | No | 960 c | 0.1 M NaCl, pH 10 | [34] | |
−1.553 | −0.951 | 50 c | 0.1 M NaCl, pH 12.5 | [34] | |
Al2CuLi (T1 phase) | −1.096 | −0.723 | 140~6.8 a,b | Aerated 0.6 M NaCl | [62] |
−1.094 | −0.756 | N/A | De-aerated 0.6 M NaCl | [62] | |
−0.803 | N/A | N/A | ASTM G69 | [62] | |
−1.076 | −0.73 | 102 | 3.5 wt. % NaCl | [63] | |
Al5(6) CuLi3 | −1.228 | −0.76 | 114 | 3.5 wt. % NaCl | [63] |
Al32Zn49 | −1.009 | No | N/A | Aerated 0.01 M NaCl | [11] |
−1.004 | No | 14 | Aerated 0.1 M NaCl | [11] | |
−1.063 | No | N/A | Aerated 0.6 M NaCl | [11] | |
Al2CuMg (S phase) | −0.95 a | N/A | N/A | Aerated 0.6 M NaCl | [58] |
−0.95 a | N/A | N/A | 0.51 M NaCl, pH 1.2 | [58] | |
−0.92 | −0.29 | 22 | 0.5 M NaCl, pH 9.17 | [48] | |
−1.06 | −0.60 | 2.8 | 0.5 M NaCl + 10 mM NaVO3, pH 9.17 | [48] | |
−0.956 | 0.108 | N/A | Aerated 0.01 M NaCl | [11,64] | |
−0.883 | 0.080 | 2 | Aerated 0.1 M NaCl | [11] | |
−1.061 | 0.135 | N/A | Aerated 0.6 M NaCl | [11] | |
−0.93 | N/A | N/A | Aerated 0.5 M NaCl | [21] | |
−0.93 | N/A | N/A | De-aerated 0.5 M NaCl | [21] | |
−0.750 | No | −20 c | 0.1 M NaCl, pH 2.5 | [34] | |
−0.883 | 0.08 | ±10 c | 0.1 M NaCl, pH 6 | [34] | |
−0.85 | −0.39 | ±1 c | 0.1 M NaCl, pH 10 | [34] | |
−0.67 | −0.35 | −36 c | 0.1 M NaCl, pH 12.5 | [34] | |
−0.86 a | N/A | N/A | 0.1 M Na2SO4 + 0.005 M NaCl, pH 6 | [31] | |
−0.87 a | N/A | N/A | 0.1 M Na2SO4 + 0.005 M NaCl, pH 3 | [31] | |
−0.873 a | N/A | N/A | 0.1 M Na2SO4 + 0.005 M NaCl, pH 10 | [31] | |
Mg2Al3 (β phase) | −1.225 | No | 102 | 0.01 M NaCl, pH 2 | [65] |
−1.197 | −0.88 a | 2.3 | 0.01 M NaCl, pH 4 | [65] | |
−1.313 | −0.9 a | 2.4 | 0.01 M NaCl, pH 6 | [65] | |
−1.31 | −0.85 a | 1.2 | 0.01 M NaCl, pH 8 | [65] | |
−1.435 | −0.9 a | 9.6 | 0.01 M NaCl, pH 10 | [65] | |
−1.124 | −0.818 | N/A | Aerated 0.01 M NaCl | [11] | |
−1.013 | −0.846 | 4.8 | Aerated 0.1 M NaCl | [11] | |
−1.162 | −0.959 | N/A | Aerated 0.6 M NaCl | [11] | |
Mg2Al3 (powder) | −1.43 | N/A | N/A | 0.6 M NaCl | [66] |
−1.39 | N/A | N/A | 0.6 M KOH | [66] | |
Al6Mn0.6Fe0.3 | −0.7 a | N/A | N/A | De-aerated AlCl3, pH 2.5 | [55] |
Al6Mn | −1.059 a | N/A | −0.69 a | De-aerated AlCl3, pH 2.5 | [55] |
−0.839 | −0.485 | N/A | Aerated 0.01 M NaCl | [11] | |
−0.779 | −0.755 | 6.3 | Aerated 0.1 M NaCl | [11] | |
−0.913 | −0.778 | N/A | Aerated 0.6 M NaCl | [11] | |
AlFe3 | −0.605 | 0.11 | N/A | 0 M KCl in aerated boric–borate solution (pH 8.4) | [67] |
−0.550 | 0.11 | N/A | 0.1 M KCl in aerated boric–borate solution (pH 8.4) | [67] | |
AlFe30.2Si | −0.64 | 0.215 | N/A | 0 M KCl in aerated boric–borate solution (pH 8.4) | [67] |
−0.585 | 0.215 | N/A | 0.1 M KCl in aerated boric–borate solution (pH 8.4) | [67] | |
AlFe30.2Ge | −0.675 | 0.31 | N/A | 0 M KCl in aerated boric–borate solution (pH 8.4) | [67] |
−0.62 | 0.31 | N/A | 0.1 M KCl in aerated boric–borate solution (pH 8.4) | [67] | |
Al3Fe | −0.493 | 0.442 | N/A | Aerated 0.01 M NaCl | [11] |
−0.539 | 0.106 | 2.1 | Aerated 0.1 M NaCl | [11] | |
−0.566 | −0.382 | N/A | Aerated 0.6 M NaCl | [11] | |
−0.834 | N/A | N/A | De-aerated 1.0 M AlCl3 | [68] | |
−0.510 | −0.050 | −42 c | 0.1 M NaCl, pH 2.5 | [34] | |
−0.539 | 0.106 | −160 c | 0.1 M NaCl, pH 6 | [34] | |
−0.408 | 0.04 | −120 c | 0.1 M NaCl, pH 10 | [34] | |
−0.23 | 0.55 | −110 c | 0.1 M NaCl, pH 12.5 | [34] | |
MgZn2 (η phase) | −1.004 | No | 167 | 3.5 wt. % NaCl | [69] |
−1.13 | No | 4.471 | 3.5 wt. % NaCl | [70] | |
−1.001 | No | N/A | Aerated 0.01 M NaCl | [11] | |
−1.029 | No | 84 | Aerated 0.1 M NaCl | [11] | |
−1.095 | No | N/A | Aerated 0.6 M NaCl | [11] | |
−1.015 | No | 30.7 | Neutral 3.5% NaCl | [71] | |
−1.007 | N/A | 120 c | 0.1 M NaCl, pH 2.5 | [34] | |
−1.003 | N/A | 1000 c | 0.1 M NaCl, pH 6 | [34] | |
−0.999 | N/A | 500 c | 0.1 M NaCl, pH 10 | [34] | |
−1.012 | N/A | 480 c | 0.1 M NaCl, pH 10 | [34] | |
Mg2Zn11 | −1.13 | No | 1.608 | 3.5 wt. % NaCl | [70] |
Al20Cu2Mn3 | −0.68 | −0.44 | 1.7 | 0.5 M NaCl, pH 9.17 | [48] |
−0.98 | −0.22 | 7.9 | 0.5 M NaCl + 10 mM NaVO3, pH 9.17 | [48] | |
−0.550 | −0.210 | N/A | Aerated 0.01 M NaCl | [11] | |
−0.565 | −0.428 | 0.34 | Aerated 0.1 M NaCl | [11] | |
−0.617 | −0.534 | N/A | Aerated 0.6 M NaCl | [11] | |
−0.742 | −0.33 | 0.22 | Aerated 0.1 M NaCl, 10 °C | [33] | |
−0.669 | −0.366 | 0.55 | Aerated 0.1 M NaCl, 30 °C | [33] | |
−0.792 | −0.423 | 1.04 | Aerated 0.1 M NaCl, 50 °C | [33] | |
−0.871 | −0.385 | 1.34 | Aerated 0.1 M NaCl, 70 °C | [33] | |
−0.636 | −0.292 | 0.17 | 0.1 M NaCl + 4 mM CeCl3, 30 °C | [51] | |
−0.452 | −0.242 | 0.08 | 0.1 M NaCl + 4 mM LaCl3, 30 °C | [42] | |
−0.519 | −0.246 | 0.072 | 0.1 M NaCl + 4 mM PrCl3, 30 °C | [42] | |
−0.79 | −0.208 | 0.022 | 0.1 M NaCl + 1 mM K2CrO4, 30 °C | [42] | |
−0.924 | −0.408 | 0.57 | 0.1 M NaCl + 4 mM CeCl3, 50 °C | [51] | |
−0.968 | −0.465 | 0.42 | 0.1 M NaCl + 4 mM CeCl3, 70 °C | [51] | |
Au20Cu2(FeMn)3 | −0.334 a | N/A | N/A | 0.1 M Na2SO4 + 0.005 M NaCl, pH 6 | [31] |
−0.386 a | N/A | N/A | 0.1 M Na2SO4 + 0.005 M NaCl, pH 3 | [31] | |
−0.327 a | N/A | N/A | 0.1 M Na2SO4 + 0.005 M NaCl, pH 10 | [31] | |
Al7Cu2Fe | −0.535 | −0.451 | −320 c | 0.1 M NaCl, pH 2.5 | [34] |
−0.551 | −0.448 | −420 c | 0.1 M NaCl, pH 6 | [34] | |
−0.604 | −0.42 | −2400 c | 0.1 M NaCl, pH 10 | [34] | |
−0.594 | −0.41 | −2600 c | 0.1 M NaCl, pH 12.5 | [34] | |
−0.63 | −0.38 | 5.8 | 0.5 M NaCl, pH 9.17 | [48] | |
−0.93 | −0.14 | 1.2 | 0.5 M NaCl + 10 mM NaVO3, pH 9.17 | [48] | |
−0.549 | −0.447 | N/A | Aerated 0.01 M NaCl | [11] | |
−0.551 | −0.448 | 6.3 | Aerated 0.1 M NaCl | [11] | |
−0.654 | −0.580 | N/A | Aerated 0.6 M NaCl | [11] | |
−0.795 | −0.397 | 0.27 | Aerated 0.1 M NaCl, 10 °C | [33] | |
−0.695 | −0.454 | 0.66 | Aerated 0.1 M NaCl, 30 °C | [33] | |
−0.787 | −0.430 | 1.04 | Aerated 0.1 M NaCl, 50 °C | [33] | |
−0.785 | −0.448 | 2.67 | Aerated 0.1 M NaCl, 70 °C | [33] | |
−0.602 | −0.301 | 0.15 | 0.1 M NaCl + 4 mM CeCl3, 30 °C | [51] | |
−0.661 | −0.29 | 0.18 | 0.1 M NaCl + 4 mM LaCl3, 30 °C | [42] | |
−0.731 | −0.371 | 0.97 | 0.1 M NaCl + 4 mM PrCl3, 30 °C | [42] | |
−0.874 | −0.101 | 0.05 | 0.1 M NaCl + 1 mM K2CrO4, 30 °C | [42] | |
−0.916 | −0.456 | 1.4 | 0.1 M NaCl + 4 mM CeCl3, 50 °C | [51] | |
−1.09 | −0.465 | 1.7 | 0.1 M NaCl + 4 mM CeCl3, 70 °C | [51] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Dang, J. A Summary of Corrosion Properties of Al-Rich Solid Solution and Secondary Phase Particles in Al Alloys. Metals 2017, 7, 84. https://doi.org/10.3390/met7030084
Li J, Dang J. A Summary of Corrosion Properties of Al-Rich Solid Solution and Secondary Phase Particles in Al Alloys. Metals. 2017; 7(3):84. https://doi.org/10.3390/met7030084
Chicago/Turabian StyleLi, Jichao, and Jie Dang. 2017. "A Summary of Corrosion Properties of Al-Rich Solid Solution and Secondary Phase Particles in Al Alloys" Metals 7, no. 3: 84. https://doi.org/10.3390/met7030084
APA StyleLi, J., & Dang, J. (2017). A Summary of Corrosion Properties of Al-Rich Solid Solution and Secondary Phase Particles in Al Alloys. Metals, 7(3), 84. https://doi.org/10.3390/met7030084