Fabrication of Nickel Nanosized Powder from LiNiO2 from Spent Lithium-Ion Battery
Abstract
:1. Introduction
2. Materials
3. Results and Discussion
4. Conclusions
- When the NaOH input ratio is 12.5–15% (wt %) compared to NiSO4, powders with less than 100 nm were agglomerated to become a size of 200–300 nm.
- Agglomerated particles can be dispersed through ultrasonic dispersion for 2 h with 40 kHz ultrasonic intensity. Agglomerated nickel particles were dispersed into nanosized particles.
- To prevent agglomeration after ultrasonic dispersion, PVP, a surface stabilizer, should be added. Particle size was found to be about 100–150 nm due to agglomeration of particles when PVP is not added. On the other hand, when PVP was added, particles of 20–50 nm were stably maintained.
- The results of ICP and XRD analysis of the finally synthesized nickel powder confirmed that it is possible to synthesize nickel particles with a purity of 99.62 wt %.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Drexler, K.E. Nanosystems: Molecular Machinery, Manufacturing, and Computation, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1992; ISBN 0471575186. [Google Scholar]
- Jung, T.K.; Joh, D.W.; Lee, H.S.; Lee, M.H. Fabrication of Ni, Pt/Ni nano powders using wire explosion process and its characterization. Procedia Eng. 2011, 10, 728–733. [Google Scholar] [CrossRef]
- Hahn, H.; Averback, R.S. The production of nanocrystalline powders by magnetron sputtering. J. Appl. Phys. 1990, 67, 1113. [Google Scholar] [CrossRef]
- Ting, L.; Gronskey, R.; Mater, J. Encyclopedia of Polymer Science and Engineering, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1984; Volume 17, p. 198. [Google Scholar]
- Moulin, P.; Roques, H. Zeta potential measurement of calcium carbonate. J. Colloid Interfaces Sci. 2003, 261, 115–126. [Google Scholar] [CrossRef]
- Krstic, V.; Duesberg, G.S.; Muster, J.; Roth, S. Langmuir-Blodgett Films of Matrix-Diluted Single-Walled Carbon Nanotubes. Chem. Mater. 1998, 10, 2338–2340. [Google Scholar] [CrossRef]
- Duesberg, G.S.; Muster, J.; Kristic, V.; Burghard, M.; Roth, S. Chromatographic purification and size separation of carbon nanotubes. Appl. Phys. 1998, 442, 39–43. [Google Scholar] [CrossRef]
- Simonelli, A.P.; Mehta, S.C.; Higuchi, W.I. Dissolution rates of high energy sulfathiazole-povidone coprecipitates. J. Pharm. Sci. 1969, 58, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.S.; Zografi, G. Spectroscopic Characterization of Interactions between PVP and Indomethacin in Amorphous Molecular Dispersions. Pharm. Res. 1997, 14, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Doktycz, S.J.; Suslick, K.S. Interparticle collisions driven by ultrasound. Science 1990, 247, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Dey, G.R.; Kishore, K. Silver clusters in 2-propanol: A radiation chemical study. Phys. Chem. 2005, 72, 565–573. [Google Scholar] [CrossRef]
- Liu, M.; Yan, X.; Liu, H.; Yu, W. An investigation of the interaction between polyvinylpyrrolidone and metal cations. React. Funct. Polym. 2000, 44, 55–64. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef]
- Perrin, J. L’agitation moleculaire et le mouvement brownien. Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences 1908, 146, 967–970. [Google Scholar]
Element | Ni | Co | Cr | Ca | Cu | Fe | Li | Mg | Mn | Na | Al | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight % | 6.44 | 0.0009 | N.D | N.D | N.D | N.D | N.D | 0.0047 | N.D | 0.006 | N.D | N.D |
Sample Name | NiSO4 (mL) | NaOH (g) | N2H4·H2O (mL) |
---|---|---|---|
Amount of Input | 100 | 10 | 30 |
100 | 12.5 | 30 | |
100 | 15 | 30 |
Element | Fe | Cu | Pb | Mn | C | S | Si | Co | Ni |
---|---|---|---|---|---|---|---|---|---|
Weight % | 0.005 | N.D | 0.01 | N.D. | 0.31 | 0.025 | 0.01 | 0.02 | Bal. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.-M.; Lee, D.-W.; Wang, J.-P. Fabrication of Nickel Nanosized Powder from LiNiO2 from Spent Lithium-Ion Battery. Metals 2018, 8, 79. https://doi.org/10.3390/met8010079
Shin S-M, Lee D-W, Wang J-P. Fabrication of Nickel Nanosized Powder from LiNiO2 from Spent Lithium-Ion Battery. Metals. 2018; 8(1):79. https://doi.org/10.3390/met8010079
Chicago/Turabian StyleShin, Shun-Myung, Dong-Won Lee, and Jei-Pil Wang. 2018. "Fabrication of Nickel Nanosized Powder from LiNiO2 from Spent Lithium-Ion Battery" Metals 8, no. 1: 79. https://doi.org/10.3390/met8010079
APA StyleShin, S. -M., Lee, D. -W., & Wang, J. -P. (2018). Fabrication of Nickel Nanosized Powder from LiNiO2 from Spent Lithium-Ion Battery. Metals, 8(1), 79. https://doi.org/10.3390/met8010079