Material Behavior Description for a Large Range of Strain Rates from Low to High Temperatures: Application to High Strength Steel
Abstract
:1. Introduction
2. Experimental Study
2.1. Experimental Procedures
2.1.1. Experiments at Room Temperature
2.1.2. Experiments at Various Temperatures
2.2. Experimental Results
2.3. Material Characterization of the Experimental Results
3. Constitutive Models
3.1. Johnson–Cook Constitutive Model
3.2. Voyiadjis–Abed Constitutive Model
3.3. Rusinek–Klepaczko Constitutive Model
4. Comparison of the Experiments with the Identified Constitutive Relations
4.1. Comparison of the Experiments with the Johnson–Cook Model
4.2. Comparison of Experiments with the Voyiadjis–Abed Model using Different Approaches
4.3. Comparison of Experiments with Rusinek–Klepaczko Model
4.4. Comparison between Constitutive Relations and Limits
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rusinek, A.; Klepaczko, J.R. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int. J. Plast. 2001, 17, 87–115. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Guo, W.G. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mech. Mater. 2003, 35, 1023–1047. [Google Scholar] [CrossRef]
- Rusinek, A.; Rodríguez-Martínez, J.A.; Klepaczko, J.R.; Pecherski, R.B. Analysis of thermo-visco-plastic behaviour of six high strength steels. Mater. Des. 2009, 30, 1748–1761. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, Hague, The Netherlands, 19–21 April 1983. [Google Scholar]
- Johnson, G.R. Implementation of simplified constitutive models in large computer codes. In Dynamic Constitutive/Failure Models; Rajendran, A.M., Nicholas, T., Eds.; University of Dayton report: Dayton, OH, USA, 1988; pp. 409–418. [Google Scholar]
- Mecking, H.; Kocks, U.F. Kinetics of flow and strain-hardening. Acta Met. 1981, 29, 1865–1875. [Google Scholar] [CrossRef]
- Follansbee, P.S.; Kocks, U.F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Met. 1988, 36, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Bammann, D.J. Modeling Temperature and Strain Rate Dependent Large Deformations of Metals. Appl. Mech. Rev. 1990, 43, S312. [Google Scholar] [CrossRef]
- Bammann, D.J.; Johnson, G.C.; Chiesa, M.L. A Strain Rate Dependent Flow Surface Model of Plasticity; SAND90-8227; Sandia National Laboratory Report: Livermore, CA, USA, 1990.
- Milella, P.P. On the Dependence of the Yield Strength of Metals on Temperature and Strain Rate. The Mechanical Equation of the Solid State. AIP Conf. Proc. 2002, 620, 642–648. [Google Scholar] [CrossRef]
- Rodríguez-martínez, J.A.; Rusinek, A.; Pesci, R.; Zaera, R. Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles. Int. J. Solids Struct. 2013, 50, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-martínez, J.A.; Pesci, R.; Rusinek, A.; Arias, A.; Zaera, R.; Pedroche, D.A. Thermo-mechanical behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles at different temperatures. Int. J. Solids Struct. 2010, 47, 1268–1284. [Google Scholar] [CrossRef] [Green Version]
- Hoge, K.G.; Mukherjee, A.K. The temperature and strain rate dependence of the flow stress of tantalum. J. Mater. Sci. 1977, 12, 1666–1672. [Google Scholar] [CrossRef]
- Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef] [Green Version]
- Voyiadjis, G.Z.; Abed, F.H. Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mech. Mater. 2005, 37, 355–378. [Google Scholar] [CrossRef]
- Malinowski, J.Z.; Klepaczko, J.R. A Unified Analytic and Numerical Approach to Specimen Behaviour in the Split-Hopkinson Pressure bar. Int. J. Mech. Sci. 1986, 28, 381–391. [Google Scholar] [CrossRef]
- Davies, E.D.; Hunter, S.C. The Dynamic Compressios Testing of Solids by the Method of the Split Hopkinson Pressure Bar. J. Mech. Phys. Solids 1963, 11, 155–179. [Google Scholar] [CrossRef]
- Ramesh, K.T. High rates and impact experiments. In Handbook of Experimental Solid Mechanics; Sharpe, W.N., Jr., Ed.; Springer: Boston, MA, USA, 2008; pp. 929–959. [Google Scholar]
- Safa, K.; Gary, G. Displacement correction for punching at a dynamically loaded bar end. Int. J. Impact Eng. 2010, 37, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, J.Z.; Klepaczko, J.R.; Kowalewski, Z.L. Miniaturized compression test at very high strain rates by direct impact. Exp. Mech. 2007, 47, 451–463. [Google Scholar] [CrossRef]
- Rusinek, A.; Bernier, R.; Boumbimba, R.M.; Klosak, M.; Jankowiak, T.; Voyiadjis, G.Z. New devices to capture the temperature effect under dynamic compression and impact perforation of polymers, application to PMMA. Polym. Test. 2018, 65, 1–9. [Google Scholar] [CrossRef]
- Ledbetter, H.M.; Weston, W.F.; Naimon, E.R. Low-temperature elastic properties of four austenitic stainless steels. J. Appl. Phys. 1975, 46, 3855–3860. [Google Scholar] [CrossRef]
- Meyers, M. Dynamic Behavior of Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994; ISBN 047158262X. [Google Scholar]
- Regazzoni, G.; Kocks, U.F.; Follansbee, P.S. Dislocation kinetics at high strain rates. Acta Metall. 1987, 35, 2865–2875. [Google Scholar] [CrossRef]
- Schulze, V.; Vöhringer, O.; Halle, T. Plastic Deformation: Constitutive Description. Mater. Sci. Mater. Eng. 2017. [Google Scholar] [CrossRef]
- Hull, D.; Bacon, D.J. Introduction to Dislocations; Elsevier Ltd.: New York, NY, USA, 2011. [Google Scholar]
- Granato, A.V. Microscopic Mechanisms of Dislocation Drag. In Proceedings of the Metallurgical Effects at High Strain Rates, Albuquerque, NM, USA, February 5–8 1973; Rohde, R.W., Butcher, B.M., Holland, J.R., Karnes, C.H., Eds.; Plenum Press: New York, NY, USA, 1973. [Google Scholar]
- Hart, E.W. Theory of the tensile test. Acta Metall. 1967, 15, 351–355. [Google Scholar] [CrossRef]
- Kocks, U.F. Realistic constitutive relations for metal plasticity. Mater. Sci. Eng. A 2001, 317, 181–187. [Google Scholar] [CrossRef]
- Klepaczko, J.R. Physical-state variables-Key to constitutive modeling in dynamic plasticity. Nucl. Eng. Des. 1991, 127, 103–115. [Google Scholar] [CrossRef]
- Rodríguez-martínez, J.A.; Rusinek, A.; Klepaczko, J.R. Constitutive relation for steels approximating quasi-static and intermediate strain rates at large deformations. Mech. Res. Commun. 2009, 36, 419–427. [Google Scholar] [CrossRef]
- Rodríguez-martínez, J.A.; Rodríguez-millán, M.; Rusinek, A.; Arias, A. A dislocation-based constitutive description for modeling the behavior of FCC metals within wide ranges of strain rate and temperature. Mech. Mater. 2011, 43, 901–912. [Google Scholar] [CrossRef] [Green Version]
- Rusinek, A.; Rodríguez-Martínez, J.A. Thermo-viscoplastic constitutive relation for aluminium alloys, modeling of negative strain rate sensitivity and viscous drag effects. Mater. Des. 2009, 30, 4377–4390. [Google Scholar] [CrossRef]
- Klepaczko, J. Thermally activated flow and strain rate history effects for some polycrystalline fcc metals. Mater. Sci. Eng. 1975, 18, 121–135. [Google Scholar] [CrossRef]
- Klepaczko, J.R.; Rusinek, A.; Rodríguez-Martínez, J.A.; Pecherski, R.B.; Arias, A. Modelling of thermo-viscoplastic behaviour of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems. Mech. Mater. 2009, 41, 599–621. [Google Scholar] [CrossRef] [Green Version]
Es (GPa) | ρs (kg·m−3) | Cp (J·kg−1·K−1) | β (-) |
---|---|---|---|
210 | 7800 | 470 | 0.9 |
A (MPa) | B (MPa) | n (-) | C (-) | m (-) | T0 (K) | Tm (K) | |
---|---|---|---|---|---|---|---|
1040.56 | 412.17 | 0.245 | 0.0122 | 0.98 | 0.0008 | 293 | 1785 |
Ya (MPa) | B (MPa) | n (-) | (MPa) | p (-) | q (-) |
---|---|---|---|---|---|
700 | 727.2 | 0.137 | 1018.39 | 0.5 | 1.5 |
Approximation Used | β1 | β2 | |
---|---|---|---|
Linear approach (original) | 1.89 × 10−3 | 7.62 × 10−5 | |
Nonlinear approach (modified) | 2.07 × 10−3 | 1.56 × 10−7 | |
Mixed approach | Linear part | 2.04 × 10−3 | 4.02 × 10−5 |
Nonlinear part | 1.84 × 10−3 | 9.97 × 10−8 |
0.33 | 1491.22 | 11.15 | 1473.2 | 0.0101 | 0.056 | 0 | 0.005 | 10−5 | 105 | 1785 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, P.; Demarty, Y.; Rusinek, A.; Voyiadjis, G.Z. Material Behavior Description for a Large Range of Strain Rates from Low to High Temperatures: Application to High Strength Steel. Metals 2018, 8, 795. https://doi.org/10.3390/met8100795
Simon P, Demarty Y, Rusinek A, Voyiadjis GZ. Material Behavior Description for a Large Range of Strain Rates from Low to High Temperatures: Application to High Strength Steel. Metals. 2018; 8(10):795. https://doi.org/10.3390/met8100795
Chicago/Turabian StyleSimon, Pierre, Yaël Demarty, Alexis Rusinek, and George Z. Voyiadjis. 2018. "Material Behavior Description for a Large Range of Strain Rates from Low to High Temperatures: Application to High Strength Steel" Metals 8, no. 10: 795. https://doi.org/10.3390/met8100795
APA StyleSimon, P., Demarty, Y., Rusinek, A., & Voyiadjis, G. Z. (2018). Material Behavior Description for a Large Range of Strain Rates from Low to High Temperatures: Application to High Strength Steel. Metals, 8(10), 795. https://doi.org/10.3390/met8100795