Dendritic Segregation of Zn-Al Eutectoid Alloys
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Babić, M.; Ninković, R. Zn–Al alloys as tribomaterials. Tribol. Ind. 2004, 26, 3–7. [Google Scholar]
- Babić, M.; Ninković, R.; Rac, A.; Batajnica, R. Sliding wear behavior of Zn–Al alloys in conditions of boundary lubrication. Citeseer 2005, 60–64. [Google Scholar]
- Babić, M.; Ninković, R.; Mitrović, S.; Bobić, I. Influence of heat treatment on tribological behavior of Zn–Al alloys. Tribol. Ind. 2007, 29, 22–31. [Google Scholar]
- Babić, M.; Mitrović, S.; Ninković, R. Tribological potencial of zinc-aluminium alloys improvement. Tribol. Ind. 2009, 31, 15–28. [Google Scholar]
- Babić, M.; Mitrović, S.; Jeremic, B. The influence of heat treatment on the sliding wear behavior of a ZA-27 alloy. Tribol. Int. 2010, 43, 16–21. [Google Scholar] [CrossRef]
- Babic, M.; Slobodan, M.; Džunic, D.; Jeremic, B.; Ilija, B. Tribological behavior of composites based on ZA-27 alloy reinforced with graphite particles. Tribol. Lett. 2010, 37, 401–410. [Google Scholar] [CrossRef]
- Elzanaty, H. The effect of different copper content on microstructure and mechanical properties of Zn-40Al and Al-40Zn alloys. Int. J. Res. Eng. Technol. 2014, 2, 55–62. [Google Scholar]
- Krajewski, W.K.; Zak, P.L.; Orava, J.; Greer, A.; Krajewski, P.K. Structural stability of the high-aluminium zinc alloys modified with Ti addition. Arch. Foundry Eng. 2012, 12, 61–66. [Google Scholar] [CrossRef]
- Krajewski, W.K.; Greer, A.; Krajewski, P.K. Trends in the development of high-aluminium zinc alloys of stable structure and properties. Arch. Metall. Mater. 2013, 58, 845–847. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Chan, K.C.; Pang, G.K.H.; Yue, T.M.; Lee, W.B. Structural Changes of α Phase in Furnace Cooled Eutectoid Zn–Al Based Alloy. J. Mater. Sci. Technol. 2007, 23, 347–352. [Google Scholar]
- Zyska, A.; Konopka, Z.; Lągiewka, M.; Nadolski, M.; Chojnacki, A. High-aluminium zinc alloy (ZnAl27Cu2) modified with titanium and boron. Arch. Foundry Eng. 2009, 9, 237–240. [Google Scholar]
- Ling, F.W.; Laughlin, D.E. The kinetics of transformation in Zn–Al superplastic alloys. Metall. Trans. A 1979, 10, 921–928. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Wang, J.C.; Yang, G.C.; Zhou, Y.H. Microstructural evolution of the supersaturated ZA27 alloy and its damping capacities. J. Mater. Sci. 2000, 35, 3383–3388. [Google Scholar]
- Krupkowski, A.; Pawlovski, A.; Dukiet-Zawadzka, B. Dendritic segregation of Al-Zn alloys solidifying at different velocity. Arch. Hutn. 1969, 14, 295–301. [Google Scholar]
- Broniewski, M.M.W.; Kucharski, J.; Winawer, W. Sur la structure des alliages aluminium-zinc. Rev. Met. Paris 1937, 34, 449–461. [Google Scholar] [CrossRef]
- Isihara, T. On the equilibrium diagram of the aluminium-zinc system. J. Inst. Met. 1925, 33, 73–90. [Google Scholar]
- Mondolfo, L.F. Equilibrium diagrams in non-ferrous alloys. Appl. Phase Diagr. Metall. Ceram. 1978, 2, 1382–1408. [Google Scholar]
- Zhu, Y.H. General Rule of Phase Decomposition in Zn–Al Based Alloys (II)—On Effects of External Stresses on Phase Transformation. Mater. Trans. 2004, 45, 3083–3097. [Google Scholar] [CrossRef]
- Torres-Villasenor, G.; Martínez-Flores, E. Hybrid Materials Based on Zn–Al Alloys. In Metal, Ceramic and Polymeric Composites for Various Uses; Cuppoletti, J., Ed.; IntechOpen: London, UK, 2011; p. 684. [Google Scholar]
- Zhu, Y.H. Phase transformations of eutectoid Zn–Al alloys. Asian J. Mater. Sci. 2001, 36, 3973–3980. [Google Scholar] [CrossRef]
- Dorantes-Rosales, H.J.; López-Hirata, V.M.; Méndez-Velázquez, J.L.; Saucedo-Munõz, M.L.; Hernández-Silva, D. Microstructure characterization of phase transformations in a Zn-22 wt% Al-2 wt% Cu alloy by XRD, SEM, TEM and FIM. J. Alloys Compd. 2000, 313, 154–160. [Google Scholar] [CrossRef]
- Dorantes-Rosales, H.J.; López-Hirata, V.M.; Esquivel-González, R.; González-Velazquez, J.L.; Moreno-Palmerin, J.; Torres Castillo, A. Zn-22Al-2Cu alloy phase transformations at different homogenizing temperatures. Met. Mater. Int. 2012, 18, 385–390. [Google Scholar] [CrossRef]
- Dorantes-Rosales, H.J.; López-Hirata, V.M.; Moreno-Palmerin, J.; Cayetano-Castro, N.; Saucedo-Muñoz, M.L.; Torres Castillo, A.A. β′ phase decomposition in Zn-22 mass% Al and Zn-22 mass% Al-2 mass% Cu alloys at room temperature. Mater. Trans. 2007, 48, 2791–2794. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, J. Eutectoid transformation in Zn alloy with high Al content. Adv. Mater. Res. 2013, 652, 1111–1114. [Google Scholar] [CrossRef]
- Arif, M.A.M.; Omar Muhamad, M.Z.; Syarif, J.; Kapranos, P. Microstructural evolution of solid-solution-treated Zn-22Al in the semisolid state. J. Mater. Sci. Technol. 2013, 29, 765–780. [Google Scholar] [CrossRef]
- Arif, M.A.M.; Omar, M.Z.; Muhamad, N. Effect of solid solution treatment on semisolid microstructure of Zn-22Al alloy. J. Sci. Technol. 2012, 21, 121–126. [Google Scholar]
- Liu, Y.; Li, H.; Jiang, H.; Lu, X. Effects of heat treatment on microstructure and mechanical properties of ZA27 alloy. Trans. Nonferrous Met. Soc. China 2013, 23, 642–649. [Google Scholar] [CrossRef]
- Agapie, M.; Peter, I.; Varga, B. Structure of cooled Zn–Al eutectoid based alloys in biphasic domain. J. Optoelectron. Adv. Mater. 2015, 17, 1842–1848. [Google Scholar]
Alloy | Chemical Composition (wt%) | |||||||
---|---|---|---|---|---|---|---|---|
ZnAl22 | Al | Cu | Mg | Cd | Pb | Fe | Sn | Zn |
21.85 | 0.195 | 0.002 | 0.006 | 0.002 | 0.117 | 0.0009 | 77.82 |
Casting Conditions | Cooling Rate (°C/min ) and Transformation Temperatures (°C) | ||
---|---|---|---|
Beginning of Solidification | Eutectic Transformation | Eutectoid Transformation | |
OL | 1080 (456) | 2160 (396) | 240 (259) |
C | 38.4 (484 ) | 14.4 (381) | 6 (250; 252) |
CC | 12 ( 486,5) | 7.8 (382,7) | 4.8 (254; 257) |
Analyzed Area | Alloying Elements Concentration (wt%) | Phase/Constituent | ||
---|---|---|---|---|
Figure | Analyzed Point | Zn | Al | |
(a) | 1 | 65 | 35 | eutectic |
2 | 62 | 38 | s.s.α intermediate layer | |
3 | 62.5 | 37.5 | s.s.α superficial layer | |
(b) | 1 | 55 | 45 | eutectoid from eutectic |
2 | 64 | 36 | s.s.α superficial layer | |
3 | 45 | 55 | s.s.α intermediate layer | |
4 | 43 | 57 | s.s.α central area | |
5 | 45 | 55 | eutectic | |
6 | 46 | 54 | s.s.α superficial layer | |
7 | 47 | 53 | s.s.α superficial layer | |
8 | 46.5 | 53.5 | s.s.α superficial layer | |
(c) | 1 | 92 | 8 | eutectic |
2 | 35 | 65 | s.s.α superficial layer | |
3 | 52 | 48 | s.s.α superficial layer | |
4 | 55 | 45 | s.s.α superficial layer | |
5 | 55 | 45 | s.s.α intermediate layer | |
6 | 94 | 6 | eutectic | |
7 | 64 | 36 | s.s.α superficial layer | |
8 | 52 | 48 | s.s.α superficial layer |
Sample Code | vî/vr (°C/min) | Heating | |||||
P1î | P2î | P3î | |||||
Teud-î (°C) | Qeud-î (J/g) | Teut-î (°C) | Qeud-î (J/g) | Tl-i (°C) | Qα-î (J/g) | ||
OL-I | 5 | 284.2 | 21.7 | 378.6 | 0.2514 | 487.3 | 152.3 |
C-II | 282.7 | 24.29 | 381.8 | 14.83 | 487.3 | 134.6 | |
C-I | 284.8 | 31.29 | 382.2 | 16.15 | 491.9 | 186.4 | |
C-II | 282.5 | 31.45 | 381.4 | 17.01 | 490.3 | 186.5 | |
CC-I | 283.2 | 33.13 | 380.2 | 11.11 | 490.5 | 200.8 | |
CC-II | 282.1 | 30.94 | 380.8 | 15.39 | 492.1 | 189.3 | |
Cooling | |||||||
P1î | P2î | P3î | |||||
Tl-r (°C) | Qα-r (J/g) | Teut-r (°C) | Qeut-r (J/g) | Teud-r (°C) | Qeud-r (J/g) | ||
OL-I | 10 | 471.3 | −123.6 | 371.4 | −21.48 | 239.2 | −24.16 |
OL-II | 471.3 | −123.3 | 371.6 | −21.46 | 239.4 | −24.24 | |
C-I | 474.0 | −136.9 | 369.4 | −19.32 | 237.7 | −27.09 | |
C-II | 473.8 | −137.2 | 368.7 | −19.46 | 238.1 | −27.25 | |
CC-I | 470.9 | −126.5 | 369.7 | −20.05 | 238.0 | −26.28 | |
CC-II | 470.5 | −127.1 | 369.8 | −20.18 | 238.1 | −25.76 |
Alloy | Processing Condition | vr (°C/min) | Teud (°C) | ∆Teud (°C) | Treheating (°C) | ∆Treheating (°C) |
---|---|---|---|---|---|---|
ZnAl22 | OL | 0.0 | 275.0 | 0 | 0.0 | - |
8.6 | 251.7 | 23.3 | 257.8 | 6.1 | ||
13.2 | 246.4 | 28.6 | 254.3 | 7.9 | ||
37.2 | 228.3 | 46.7 | 240.0 | 11.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peter, I.; Agapie, M.; Varga, B. Dendritic Segregation of Zn-Al Eutectoid Alloys. Metals 2018, 8, 924. https://doi.org/10.3390/met8110924
Peter I, Agapie M, Varga B. Dendritic Segregation of Zn-Al Eutectoid Alloys. Metals. 2018; 8(11):924. https://doi.org/10.3390/met8110924
Chicago/Turabian StylePeter, Ildiko, Mirela Agapie, and Bela Varga. 2018. "Dendritic Segregation of Zn-Al Eutectoid Alloys" Metals 8, no. 11: 924. https://doi.org/10.3390/met8110924
APA StylePeter, I., Agapie, M., & Varga, B. (2018). Dendritic Segregation of Zn-Al Eutectoid Alloys. Metals, 8(11), 924. https://doi.org/10.3390/met8110924