Impact of Dynamic Non-Equilibrium Processes on Fracture Mechanisms of High-Strength Titanium Alloy VT23
Abstract
:1. Introduction
2. Research Technique
3. Metallographic Analysis and Hardness Measurement
4. Microanalysis of Specimen Fractures
5. Algorithm for Optical-Digital Image Analysis
6. Parameters of Dimples of Tearing as an Integral Indicator of the Alloy Ductility
7. Discussion of Results
8. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chausov, M.G.; Maruschak, P.O.; Hutsaylyuk, V.; Śnieżek, L.; Pylypenko, A.P. Effect of complex combined loading mode on the fracture toughness of titanium alloys. Vacuum 2018, 147, 51–57. [Google Scholar] [CrossRef]
- Chausov, M.; Maruschak, P.; Pylypenko, A.; Markashova, L. Enhancing plasticity of high-strength titanium alloys VT 22 under impact-oscillatory loading. Philos. Mag. 2017, 97, 389–399. [Google Scholar] [CrossRef]
- Chausov, M.; Maruschak, P.; Prentkovskis, O.; Karpets, M. Risks associated with the use of high-strength titanium alloys in transportation systems. In Reliability and Statistics in Transportation and Communication; Kabashkin, I., Yatskiv, I., Prentkovskis, O., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 213–222. [Google Scholar]
- Romanova, V.A.; Balokhonov, R.R.; Schmauder, S. A comparative analysis of the mesoscale stress–strain state in two- and three-dimensional polycrystalline specimens. Phys. Mesomech. 2010, 13, 178–183. [Google Scholar] [CrossRef]
- Romanova, V.A.; Balokhonov, R.R.; Schmauder, S. Numerical study of mesoscale surface roughening in aluminum polycrystals under tension. Mat. Sci. Eng. A. 2013, 564, 255–263. [Google Scholar] [CrossRef]
- Romanova, V.A.; Balokhonov, R.R.; Schmauder, S. Three-dimensional analysis of mesoscale deformation phenomena in welded low-carbon steel. Mat. Sci. Eng. A. 2011, 528, 5271–5277. [Google Scholar] [CrossRef]
- Chausov, M.; Pylypenko, A.; Berezin, V.; Volyanska, K.; Maruschak, P.; Hutsaylyuk, V.; Markashova, L.; Nedoseka, S.; Menou, A. Influence of dynamic non-equilibrium processes on strength and plasticity of materials of transportation systems. Transport 2018, 33, 231–241. [Google Scholar] [CrossRef]
- Kosarevych, R.Y.; Student, O.Z.; Svirs’ka, L.M.; Rusyn, B.P.; Nykyforchyn, H.M. Computer analysis of characteristic elements of fractographic images. Mat. Sci. 2013, 48, 474–481. [Google Scholar] [CrossRef]
- Zhu, Y.; Zeng, W.; Z, Y. Influence of deformation parameters on fracture mechanism of Ti40 titanium alloy. Rare Metal Mater. Eng. 2017, 46, 1207–1213. [Google Scholar]
- Sabirov, I.; Valiev, R.Z.; Pippan, R. About application of three dimensional analyses of fracture surfaces in fracture study on nanostructured titanium. Comput. Mat. Sci. 2013, 76, 72–79. [Google Scholar] [CrossRef]
- Thompson, A.W. Fractography and its role in fracture interpretation. Fatigue Fract. Eng. Mat. Struct. 1996, 19, 1307–1316. [Google Scholar] [CrossRef]
- Wouters, R.; Froyen, L. Scanning electron microscope fractography in failure analysis of steels. Mater. Charact. 1996, 36, 357–364. [Google Scholar] [CrossRef]
- Strnadel, B.; Jonšta, Z. Distribution of dimple sizes on the fracture surface of spheroidized steel in the transition region. Eng. Fract. Mech. 1994, 48, 863–871. [Google Scholar] [CrossRef]
- You, C.P.; Thompson, A.W.; Bernstein, I.M. Ductile fracture processes in 7075 aluminum. Metall. Mater. Trans. A 1995, 26, 407–415. [Google Scholar] [CrossRef]
- Marushchak, P.O.; Konovalenko, I.V. Computer evaluation of the depth of thermomechanical fatigue cracks according to their length. Mat. Sci. 2012, 48, 54–64. [Google Scholar] [CrossRef]
- Chausov, M.G.; Maruschak, P.O.; Pylypenko, A.P.; Berezin, V.B. Features of Deformation and Fracture of Plastic Materials under Impact-Oscillatory Loading; Ternopil: Terno-Graf, Ukraine, 2018; 288p. (In Ukrainian) [Google Scholar]
- Colangelo, V.J.; Heiser, F.A. Analysis of metallurgical failures, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1987. [Google Scholar]
- Konovalenko, I.; Maruschak, P.; Prentkovskis, O. Automated method for fractographic analysis of shape and size of dimples on fracture surface of high-strength titanium alloys. Metals 2018, 8, 161. [Google Scholar] [CrossRef]
- Konovalenko, I.; Maruschak, P.; Chausov, M.; Prentkovskis, O. Fuzzy logic analysis of parameters of dimples of ductile tearing on the digital image of fracture surface. Proc. Eng. 2017, 187, 229–234. [Google Scholar] [CrossRef]
- Sun, J. Effect of stress triaxiality on micro-mechanisms of void coalescence and micro-fracture ductility of materials. Eng. Fract. Mech. 1991, 39, 799–805. [Google Scholar] [CrossRef]
- Wilsdorf, H.G.F. The ductile fracture of metals: A microstructural viewpoint. Mat. Sci. Eng. 1983, 59, 1–39. [Google Scholar] [CrossRef]
- Hure, J.; Barrioz, P.O. Theoretical estimates for flat voids coalescence by internal necking. Eur. J. Mech. A. Solids 2016, 60, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Šebek, F.; Petruška, J.; Kubík, P. Lode dependent plasticity coupled with nonlinear damage accumulation for ductile fracture of aluminium alloy. Mater. Des. 2018, 137, 90–107. [Google Scholar] [CrossRef]
- Maruschak, P.; Konovalenko, I.; Prentkovskis, O.; Chausov, M.; Pylypenko, A. Methods and some results of automated analysis of ductile failure mechanisms of titanium alloy VT-22. Proc. Eng. 2016, 134, 475–480. [Google Scholar] [CrossRef]
- Yasniy, P.; Maruschak, P.; Bishchak, R.; Hlado, V.; Pylypenko, A. Damage and fracture of heat resistance steel under cyclic thermal loading. Theor. Appl. Fract. Mech. 2009, 52, 22–25. [Google Scholar] [CrossRef]
- Rajanna, K.; Pathiraj, B.; Kolster, B.H. X-ray fractography studies on austenitic stainless steels. Eng. Fract. Mech. 1996, 54, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Konovalenko, I.V.; Marushchak, P.O.; Bishchak, R.T. Automated estimation of damage to the surface of gas main by corrosion pittings. Mat. Sci. 2014, 49, 493–500. [Google Scholar] [CrossRef]
- Ruggiero, C.; Ross, A.; Porter, R. Segmentation and learning in the quantitative analysis of microscopy images. Image Process: Mach. Vision Appl. 2015, 94050L. [Google Scholar] [CrossRef]
- Konovalenko, I.V.; Maruschak, P.O.; Bilous, I.V.; Maliuk, A.R. Development of network technologies for the analysis of fractographic images. In Proceedings of the 5-th Scientific and Technical Conference “Information Models, Systems and Technologies”, Ternopil, Ukraine, 1–2 February 2018. [Google Scholar]
- Bilous, I.V.; Maliuk, A.R. Creation of web application and algorithm for automated calculation of fractographic image parameters. Master Thesis, Ternopil Ivan Pul’uj National Technical University, Ternopil, Ukraine, 2018. [Google Scholar]
- Panin, V.E. Physical Mesomechanics of Heterogeneous Media and Computer Aided Design of Materials; Cambridge International Science Publishing: Cambridge, UK, 1998. [Google Scholar]
- Panin, V.E. Overview on mesomechanics of plastic deformation and fracture of solids. Theor. Appl. Fract. Mech. 1998, 30, 1–11. [Google Scholar] [CrossRef]
- Panin, V.E. Plastic deformation and fracture of solids at the mesoscale level. Mater. Sci. Eng. A 1997, 234, 944–948. [Google Scholar] [CrossRef]
- Panin, V.E.; Egorushkin, V.E. Curvature solitons as generalized wave structural carriers of plastic deformation and fracture. Phys. Mesomech. 2013, 16, 267–286. [Google Scholar] [CrossRef]
- Das, A.K. Metallurgy of Failure Analysis; McGraw-Hill, Inc.: New York, NY, USA, 1997; 354p. [Google Scholar]
- Hull, D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography; Cambridge University Press: Cambridge, UK, 1999; 366p. [Google Scholar]
- Chausov, M.G.; Pylypenko, A.P.; Maruschak, P.O. A Method for the Improvement of Plastic Properties of Sheet Two-Phase High-Strength Titanium Alloys Caused by Impact-Oscillatory Loading: Scientific and Methodical Recommendations for the Ukrainian Plants for the Design of Production of Agricultural Equipment; FOP V. A. Palyanytsya: Ternopil, Ukraine, 2017; 48p. (In Ukrainian) [Google Scholar]
- Chausov, M.; Hutsaylyuk, V.; Maruschak, P.; Pylypenko, A. Selection of the main controlling parameters of impact-oscillatory loading for maximum improvement of plastic properties of two-phase high-strength titanium alloys. In Proceedings of the 12-th Int. Sci. Conference ”Intelligent Technologies in Logistics and Mechatronics Systems”, Panevėžys, Lithuania, 26–27 April 2018. [Google Scholar]
- Moiseenko, D.; Maruschak, P.; Panin, S.; Maksimov, P.; Vlasov, I.; Berto, F.; Schmauder, S.; Vinogradov, A. Effect of structural heterogeneity of 17Mn1Si steel on the temperature dependence of impact deformation and fracture. Metals 2017, 7, 280. [Google Scholar] [CrossRef]
- Maruschak, P.; Konovalenko, I.; Prentkovskis, O.; Tsyrulnyk, O. Digital analysis of shape and size of dimples of ductile tearing on fracture surface of long-operated steel. Proc. Eng. 2016, 134, 437–442. [Google Scholar] [CrossRef]
Titanium Alloy | Mechanical Properties | ||
---|---|---|---|
σys, MPa | σus, MPa | δ, % | |
VT23 | 980–1180 | 1080–1280 | 15 |
Titanium Alloy | Loading Modes | Preliminary Static Deformation, εstat,% | Force Pulse Loading, Fimp, kN | Ultimate Strength, σu, MPa | Failure Strain, εf,% |
---|---|---|---|---|---|
VT23 | 1. SS | - | - | 1129 | 15.7 |
2. SS-DNP-SS (DNP1) | 0.363 | 125 | 1107 | 21.09 | |
3. SS-DNP-SS (DNP2) | 0.390 | 124 | 1176.7 | 20.52 |
Type of Relief Formations | Causes of Occurrence | Mechanisms of Development of Deformation Processes |
---|---|---|
Local stratifications, tears-out, elevations (macrolevel—units in mm) | Influence of structural nonuniformity of the material due to rolling | Localized macrodeformation with the germination of the macrocrack, when the ultimate state is attained across the “fibers of the material” |
Relief “dashes”, tears-out on large surfaces, elevations (mesolevel—up to hundreds of microns) | Plastic deformation, “twists”, and deformation of the front of the plastic wave due to the realization of DNP | Branching of the fracture front on grain conglomerates, distortion of local sections of elevations, merging of pore conglomerates. |
Local structural-phase transformations in individual grains (microlevel—up to tens of microns) | Deformation and cutting of interstices between the pores of the material | Localized deformation, detachment of inclusions, thinning of interstices between pores, their merging. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruschak, P.; Konovalenko, I.; Chausov, M.; Pylypenko, A.; Panin, S.; Vlasov, I.; Prentkovskis, O. Impact of Dynamic Non-Equilibrium Processes on Fracture Mechanisms of High-Strength Titanium Alloy VT23. Metals 2018, 8, 983. https://doi.org/10.3390/met8120983
Maruschak P, Konovalenko I, Chausov M, Pylypenko A, Panin S, Vlasov I, Prentkovskis O. Impact of Dynamic Non-Equilibrium Processes on Fracture Mechanisms of High-Strength Titanium Alloy VT23. Metals. 2018; 8(12):983. https://doi.org/10.3390/met8120983
Chicago/Turabian StyleMaruschak, Pavlo, Ihor Konovalenko, Mykola Chausov, Andrii Pylypenko, Sergey Panin, Ilya Vlasov, and Olegas Prentkovskis. 2018. "Impact of Dynamic Non-Equilibrium Processes on Fracture Mechanisms of High-Strength Titanium Alloy VT23" Metals 8, no. 12: 983. https://doi.org/10.3390/met8120983
APA StyleMaruschak, P., Konovalenko, I., Chausov, M., Pylypenko, A., Panin, S., Vlasov, I., & Prentkovskis, O. (2018). Impact of Dynamic Non-Equilibrium Processes on Fracture Mechanisms of High-Strength Titanium Alloy VT23. Metals, 8(12), 983. https://doi.org/10.3390/met8120983