The Effect of Low-Quantity Cr Addition on the Corrosion Behaviour of Dual-Phase High Carbon Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Analytical Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Azazi, A.; Shafaei, S.Z.; Naoparast, M.; Karamoozian, M. An investigation of the corrosive wear of steel balls in grinding of sulphide ores. Int. J. Min. Geo-Eng. 2015, 49, 83–91. [Google Scholar]
- Park, S.; Lee, S.; Kim, J. Effect of chromium on the corrosion behavior of low alloy steel in sulfuric acid. Met. Mater. Int. 2012, 18, 975–987. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Sahajwalla, V. Corrosion Behaviour of Dual-Phase High Carbon Steel—Microstructure Influence. J. Manuf. Mater. Process. 2017, 1, 21. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Sahajwalla, V. Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel. World Academy of Science, Engineering and Technology. Int. J. Mater. Metall. Eng. 2018, 12. [Google Scholar] [CrossRef]
- Gouné, M.; Danoix, F.; Allain, S.; Bouaziz, O. Unambiguous carbon partitioning from martensite to austenite in Fe–C–Ni alloys during quenching and partitioning. Scr. Mater. 2013, 68, 1004–1007. [Google Scholar] [CrossRef]
- Hossain, R.; Pahlevani, F.; Sahajwalla, V. Effect of small addition of Cr on stability of retained austenite in high carbon steel. Mater. Charact. 2017, 125, 114–122. [Google Scholar] [CrossRef]
- Hossain, R.; Pahlevani, F.; Quadir, M.; Sahajwalla, V. Stability of retained austenite in high carbon steel under compressive stress: An investigation from macro to nano scale. Sci. Rep. 2016, 6, 34958. [Google Scholar] [CrossRef] [PubMed]
- Annergren, I. Electrochemical Impedance Spectroscopy for In Situ Studies of Anodic Dissolution and Pitting Corrosion of Iron-Chromium alloys. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 1996. [Google Scholar]
- Pittenger, N.E.B.; Chanmin. Quantitative Mechanical Mapping at nanoscale with Peak Force QNM; Bruker Application Note; Bruker: Santa Barbara, CA, USA, 2009; pp. 1–12. [Google Scholar]
- Döner, A.; Solmaz, R.; Özcan, M.; Kardaş, G. Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution. Corros. Sci. 2011, 53, 2902–2913. [Google Scholar] [CrossRef]
- Anantha, K.; Örnek, C.; Ejnermark, S.; Medvedeva, A.; Sjöström, J.; Pan, J. In Situ AFM Study of Localized Corrosion Processes of Tempered AISI 420 Martensitic Stainless Steel: Effect of Secondary Hardening. J. Electrochem. Soc. 2017, 164, C810–C818. [Google Scholar] [CrossRef]
- Wang, B.; Du, M.; Zhang, J.; Gao, C. Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion. Corros. Sci. 2011, 53, 353–361. [Google Scholar] [CrossRef]
- Fréchard, S.; Martin, F.; Clément, C.; Cousty, J. AFM and EBSD combined studies of plastic deformation in a duplex stainless steel. Mater. Sci. Eng. A 2006, 418, 312–319. [Google Scholar] [CrossRef]
- Hengerer, F.; Nierlich, W.; Volkmuth, J.; Nutzel, H. Dimensional stability of high carbon bearing steels. Ball Bear. J. 1988, 231, 26–31. [Google Scholar]
- Yang, X.; Castle, J. Using in situ AFM to investigate corrosion and passivation of duplex stainless steels. Surf. Interface Anal. 2002, 33, 894–899. [Google Scholar] [CrossRef]
- Remmerswaal, T. The Influence of Microstructure on the Corrosion Behaviour of Ferritic-Martensitic Steel: 3.2 Influence of Prior Austenite Grain Size on Corrosion Properties. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2015; pp. 57–62. [Google Scholar]
- ASTM International. Chapter 6: Austenitic Stainless Steel. In Stainless Steels for Design Engineers; ASTM International: Philadelphia, PA, USA, 2008; pp. 69–78. [Google Scholar]
- Li, X.Y.; Zhao, L.M.; Qun, F.L.; Wang, H.Y.; Ching, F.; Hua, M. Effects of Mn on Corrosion Resistant Property of AZ91 Alloys. Rare Met. Mater. Eng. 2014, 43, 278–282. [Google Scholar]
- Vasil’eva, A.; Prokoshkin, D.; Goryushin, V. Effect of chromium on strain hardening of martensite. Met. Sci. Heat Treat. 1974, 16, 507–510. [Google Scholar] [CrossRef]
- Jirková, H.; Kučerová, L.; Mašek, B. The Effect of Chromium on Microstructure Development during Q-P Process. Mater. Today Proc. 2015, 2, S627–S630. [Google Scholar] [CrossRef]
- Abreu, H.; Carvalho, S.; Neto, P.L.; Santos, R.; Freire, V.; Silva, P.; Tavares, S. Deformation induced martensite in an AISI 301LN stainless steel: Characterization and influence on pitting corrosion resistance. Mater. Res. 2007, 10, 359–366. [Google Scholar] [CrossRef]
- Andrade, C.; Alonso, C. Corrosion rate monitoring in the laboratory and on-site. Constr. Build. Mater. 1996, 10, 315–328. [Google Scholar] [CrossRef]
- Gravano, S.; Galvele, J.R. Transport processes in passivity breakdown—III. Full hydrolysis plus ion migration plus buffers. Corros. Sci. 1984, 24, 517–534. [Google Scholar] [CrossRef]
- Abd El-Lateef, H.M.; Khalaf, M.M. Corrosion resistance of ZrO2–TiO2 nanocomposite multilayer thin films coated on carbon steel in hydrochloric acid solution. Mater. Charact. 2015, 108, 29–41. [Google Scholar] [CrossRef]
- Ha, H.; Seo, W.; Park, J.; Lee, T.; Kim, S. Influences of Mo on stress corrosion cracking susceptibility of newly developed FeCrMnNiNC-based lean austenitic stainless steels. Mater. Charact. 2016, 119, 200–208. [Google Scholar] [CrossRef]
- McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci. 2005, 47, 3202. [Google Scholar] [CrossRef]
- Annergren, I. Localized Electrochemical Impedance Spectroscopy for Studying Pitting Corrosion on Stainless Steels. J. Electrochem. Soc., 1997, 144, 1208. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Cheng, X.; Wang, H.; Huang, Z. Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater. Sci. Eng. A 2018, 715, 307–314. [Google Scholar] [CrossRef]
- Chen, C.; Lu, M.; Sun, D.; Zhang, Z.; Chang, W. Effect of Chromium on the Pitting Resistance of Oil Tube Steel in a Carbon Dioxide Corrosion System. Corrosion 2005, 61, 594–601. [Google Scholar] [CrossRef]
- Jiang, S.; Chai, F.; Su, H.; Yang, C. Influence of chromium on the flow-accelerated corrosion behavior of low alloy steels in 3.5% NaCl solution. Corros. Sci. 2017, 123, 217–227. [Google Scholar] [CrossRef]
- Ziętala, M.; Durejko, T.; Polański, M.; Kunce, I.; Płociński, T.; Zieliński, W.; Łazińska, M.; Stępniowski, W.; Czujko, T.; Kurzydłowski, K.; et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Mater. Sci. Eng. A 2016, 677, 1–10. [Google Scholar] [CrossRef]
Sample | Cr (in wt %) | % Retained Austenite |
---|---|---|
A | 0.1–0.18% | 47–50% |
B | 0.6–0.80% | 48–53% |
C | 1.8–2.50% | 57–59% |
Sample | Cr (in wt %) | % Retained Austenite | 1-h Corrosion | 2-h Corrosion |
---|---|---|---|---|
A | 0.10–0.18% | 47–50% | Austenite: moderate damaged; Martensite: undamaged | Austenite: moderate damaged; Martensite: slight damaged |
B | 0.60–0.80% | 48–53% | Austenite: moderate damaged; Martensite: undamaged | Austenite: moderate damaged; Martensite: slight damaged |
C | 1.80–2.50% | 57–59% | Austenite: unmodified; Martensite: slight damaged | Austenite: almost unmodified; Martensite: moderate damaged |
Sample | Density (g/cm3) | Tested Area (cm2) | Equivalent Weight (g) | Potential (mV) | icorr (μA) | Mils Penetration per Year (mpy) |
---|---|---|---|---|---|---|
A | 7.6058 | 1 | 28.65 | −695.3 | 9.919 | 4.857 |
B | 7.6067 | 1 | 28.79 | −676.7 | 9.839 | 4.841 |
C | 7.6531 | 1 | 29.20 | −590.7 | 5.955 | 2.954 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handoko, W.; Pahlevani, F.; Sahajwalla, V. The Effect of Low-Quantity Cr Addition on the Corrosion Behaviour of Dual-Phase High Carbon Steel. Metals 2018, 8, 199. https://doi.org/10.3390/met8040199
Handoko W, Pahlevani F, Sahajwalla V. The Effect of Low-Quantity Cr Addition on the Corrosion Behaviour of Dual-Phase High Carbon Steel. Metals. 2018; 8(4):199. https://doi.org/10.3390/met8040199
Chicago/Turabian StyleHandoko, Wilson, Farshid Pahlevani, and Veena Sahajwalla. 2018. "The Effect of Low-Quantity Cr Addition on the Corrosion Behaviour of Dual-Phase High Carbon Steel" Metals 8, no. 4: 199. https://doi.org/10.3390/met8040199
APA StyleHandoko, W., Pahlevani, F., & Sahajwalla, V. (2018). The Effect of Low-Quantity Cr Addition on the Corrosion Behaviour of Dual-Phase High Carbon Steel. Metals, 8(4), 199. https://doi.org/10.3390/met8040199